

泊発電所の基準津波について

平成25年8月14日 北海道電力株式会社

- 1. 評価方針
- 2. 地震による津波
 - 2-1 文献調査結果
 - 2-2 既往津波の再現性検討
 - 2-3 海域活断層に想定される地震に伴う津波の検討
 - 2-4 日本海東縁部に想定される地震に伴う津波の検討
- 3. 地震以外の津波
 - 3-1 火山による山体崩壊に伴う津波
 - 3-2 海底地すべりに伴う津波
 - 3-3 陸上の斜面崩壊に伴う津波
- 4. 基準津波の策定
 - 4-1 基準津波の策定
 - 4-2 超過確率の参照
- 5. 二次的な影響に対する評価

1. 評価方針

○施設の供用期間中に極めてまれではあるが、発生する可能性のある津波を想定する。
 ○地震以外(火山の山体崩壊、海底地すべり及び陸上の斜面崩壊)の津波を想定する。

〇上記の組合せを考慮したうえで、基準津波を策定する。

2. 地震による津波

○土木学会(2002)「原子力発電所の津波評価技術」に示される検討手順に基づき、以下のとおり敷地前面、取水口及び放水口における水位変動を検討する。

①文献調査及び数値シミュレーションによる既往津波の再現性検討(数値 シミュレーションの妥当性確認)

②海域活断層及び日本海東縁部に想定される地震に伴う津波の基準断層 モデル(波源モデル)の設定と数値シミュレーションによる検討

日本海で発生した地震と津波波源域

【既往津波高の記録 -敷地周辺-】

行政機関による津波評価

10.00		和传Y	経度日	综合社	之间 8	類斜角	すべり角	長さL	5.38	すべり量
an o	~~n	()	¢)	(km)	(°)	δ (*)	λ(*)	('sm)	(kn)	((cz)
Ф	北海道北西沖 (沖側)	44, 62	139, 48	1	5	45	90	200	24	547
٢	北海道北西沖 (沿岸側)	46.22	141. 17	1	180	45	90	200	24	547
3	留萌沖 (走向225°)	44. 13	141.16	Û	225	40	90	190	35	150
		43.77	139, 32	1	180	45	90	55	24	175
		44, 57	139, 34	θ	22	45	90	16	-42	164
۲	神威岬神 (satake2005)	44.55	139, 58	0	184	45	90	16	42	223
	(init function of the	44.17	139, 48	0	162	45	90	36	37	274
		43, 69	139, 13	θ	0	45	90	16	53	58
		43, 13	139.4	10	188	35	80	90	25	571
٩	北海道南西冲	42.34	139.25	5	175	60	105	26	25	400
		42.11	139.21	5	150	60	105	30, 5	15	1200
		41.9	139, 45	1	170	60	90	55	24	175
		41.35	138, 9	1	60	30	90	30	23	80
	Active and part of the second	40. 92	139.06	1	340	30	90	30	40	45
W	10 Mill 295 204 777 374	40.67	139, 18	1	340	30	90	30	40	548
		40.47	138.92	1	20	30	90	30	40	324
		40, 21	138, 8	1	20	30	90	30	40	166

北海道 (2010)より

行政機関による津波評価

北海道日本海側における津波堆積物調査地点

2013年3月8日現在 道総研 地質研究所

北海道(2013)より

9

行政機関による津波評価

■奥尻島(平成24年4月実施)過去にも複数回の津波の発生を確認

北海道(2013)より

8 2 2 2 3

mT1

基盤岩(中新統千星層

行政機関による津波評価

(参考1-4) ボーリング等による調査

岩内平野の津波堆積物調査 泥炭層が厚い地点で、古い時代の津波堆積物の有無を確認

北海道 (2013) より

2-2 既往津波の再現性検討

既往津波の再現性検討

50 100 km

2-2 既往津波の再現性検討

13

計算手法及び計算条件

○計算は、後藤ほか(1982)に基づき非線形長波の連続式及び運動方程式を基礎方程 式とし、計算格子間隔を5kmから5mとした。

領域項目	A領域	B領域	C領域	D領域	E領域	F領域	G領域	H領域
計算領域			日本海全	域(南北約1 ,5() 00km, 東西約	1,200km)		<u></u>
計算格子間隔∆s	5 km	2.5 km	833 m (2500/3)	278 m (2500/9)	93 m (2500/27)	31 m (2500/81)	10 m (2500/243)	5 m (2500/486)
計算時間間隔∆t								
基礎方程式	線形長波	線形長波 非線形長波						
沖合境界条件	自由透過	自由透過 外側の大格子領域と、水位・流量を接続						
陸側境界条件		完全	反射		小谷ほか (1998) の 遡上境界条件			
初期条件	地震断層モデ 面上に与える。	ルを用いてMar 。	isinha and Sm	ylie (1971) の	方法により計算	≨される海底地	!殻変位を初期	水位として海
海底摩擦	考慮 しない	考慮 マニングの粗度係数 n=0.03 m ^{-1/3} ・s しない (土木学会(2002))						
水平渦動粘性	考慮 しない	係数 K _h =1.0×10 ⁵ cm ² /s(土木学会(2002))						
計算潮位	検証計算:T.P.±0.0m 予測計算:M.S.L.=T.P.+0.21m							
計算時間		地震発			上後3時間			

海底地形のモデル化(1/4)

資料の種類	発行者	図名	図番号 (海域番号)	縮尺 あるいは メッシュサイズ	刊行年	作成したデータの範囲
	GEBCO	GEBCO_08		30秒メツシュ (約900 m)	2010	A領域全体
グリッド水深データ (緯度経度座標)	日本水路協会	JTOPO30	M1406 M1407 M1506 M1507	30秒メッシュ (約900 m)	2003	B領域全体
海底地形等深線 デジタルデータ (緯度経度座標)	日本水路協会	北海道北部 北海道西部 秋田沖 津軽海峡東部	M7015 M7009 M7010 M7006		2006	B、C、D、E領域
海図	海上保安庁	北海道西岸南部諸 分図第2(古平漁 港・岩内港・瀬棚 港・余市港)	W39	1/7,000~1/10,000	2005	F領域の一部、岩内港について作成
	国土地理院	50mメツ	シュ標高	50mメッシュ		E~G領域の陸上
標高データ	北海道電力	深浅測量成	课、竣工図	2m、50~100mメッシュ		E, F, G, H領域の海域、H領域の敷地 内については、構造物竣工図
	北海道開発局	局 DEMデータ		1mメッシュ	2009年度に借用	Gの一部、H領域の海岸線付近

海底地形のモデル化(2/4)

- ○H領域(5m格子間隔)における海域については、深浅測量成果(2m、50~100m間隔の測量データ)を 基に作成。
- ○陸域については、国土地理院の50mメッシュ標高データをベースに作成したうえで、海岸線付近の低標高部で1mメッシュDEMデータのある範囲は、このデータの値を採用した。
- ○敷地近傍の岩礁付近のモデル化については、海面下は深浅測量成果を採用し、陸上部については岩 礁の崩壊等の可能性を考慮して0.1mの水深に置き換えた。

15

岩礁位置図

岩礁部モデル化概要図

16

海底地形のモデル化(3/4)

計算領域と水深

2-2 既往津波の再現性検討

海底地形のモデル化(4/4)

計算領域と水深

再現性の評価

○再現性の評価の指標としては、相田(1977)による痕跡高と津波の数値シミュレーション により計算された津波高との比から求める幾何平均値K及びバラツキを表す幾何標準偏 差 κ を用いた。

○幾何平均値K及び幾何標準偏差 κ については、土木学会(2002)による再現性の目安 が以下のように示されている。

$$\log K = \frac{1}{n} \sum_{i=1}^{n} \log K_i$$
$$\log \kappa = \left\{ \frac{1}{n} \sum_{i=1}^{n} (\log K_i)^2 - (\log K)^2 \right\}^{1/2}$$
$$K_i = \frac{R_i}{H_i}$$
ここでRiはi番目の地点の観測値 (痕跡高)、Hiはi番目の地点の計算値

【幾何平均値K及び幾何標準偏差 κの再現性の目安(土木学会(2002)による)】

2-2 既往津波の再現性検討

既往津波と計算津波高の比較(1993年北海道南西沖地震津波)

1) 断層幅の上限W_tは、地震発生層の厚さH_eを15kmとし、傾斜角δを60°(30~60°のうちM_Wが最大となる値)とした際には、W_t=H_e/sinδ=17.3kmとなる。また、断層幅の上限に対応する断層長さL_tは、L_t=1.5W_t=26.0kmとなる。

2) 断層幅の上限に対応するすべり量D_tは、モーメントマグニチュードを M_{Wt} = $(\log L_t + 3.77) / 0.75 = 6.91$, 地震モーメントを $M_{0t} = 10^{\circ} (1.5M_{Wt} + 9.1) = 2.95 \times 10^{19}$ Nm, 剛性率を $\mu = 3.50 \times 10^{10}$ N/m²とした際には、D_t = M_{0t} / $(\mu L_t W_t) = 1.87$ mとなる。

簡易予測式による推定津波高の算定フロー

名称	断層長さ L(km)	幅 W(km)	すべり 量 D (m)	地震 モーメント M _o (N・m)	モーメント マク'ニチュー ト' Mw	津波の 伝播距離 ム (km)	推定 津波高 H _t (m)
岩内堆東撓曲	23.7	15.8	1.69	2.21×10 ¹⁹	6.8	34	0.9
寿都海底谷の断層	32	17.3	2.28	4.42×10 ¹⁹	7.0	44	1.1
神威海助西側の断層	31.5	17.3	2.24	4.28×10 ¹⁹	7.0	48	1.0
F _B -2断層	101	17.3	7.19	4.40×10 ²⁰	7.7	85	2.6

簡易予測式による推定津波高

21

推定津波高が最大となったF_B-2断層を対象とし、 数値シミュレーションを実施。

	凡	例	([新編]	日本の活開	所層)	
陸	上			海	底	
	活断層	(確実)	度1)		活断層	(確実)
********	活断層	(確実	度Ⅱ)	********	活断層	(推定)
	活断層	(確実	度 田)	0000000	活撓曲	(確実)

太線は主な活断層を示す。

21

[活断層研究会(1991)に一部加筆] 海域活断層分布

22

2-3 海域活断層に想定される地震に伴う津波の検討

[基準断層モデル諸元]

断層パラメータ	F _B 一2断層	備考	
モーメントマク゛ニチュート゛ M _w	7.67	武村 (1998)に基づくスケーリング則により設定。	
断層長さ L	96km (48km×2)	地質調査結果により設定。	
断層幅 W 21.21km		地震発生層の厚さ(15km)と傾斜角により設定。	
すべり量 D	5.65m	M _w , L, Wにより設定。	
断層面上縁深さ d	Okm		
走向 0	北断層 204° 南断層 174°	地質調査結果により、西側傾斜の逆断層と設定。	
傾斜角 δ	45°	日本海東縁部の傾斜角30~60°より設定。	
すべり角 λ	90°		

基準断層モデル図

パラメータスタディ(F_B -2断層)

①概略パラメータスタディとして、傾斜角とすべり角を組み合わせた9ケースの数値シミュレーションを実施し、敷地前面の水位上昇及び水位下降(1,2号炉取水口、3号炉取水口)に関して各々の最大ケースを抽出。 ②詳細パラメータスタディとして、上記で得られた最大ケースについて、断層面上縁深さ6ケースの数値シミュレーションを実施。

①概略パラメータスタディ

23

パラメータ項目	パラメータ 変動範囲	ケ-	-ス数
傾斜角	30, 45, 60°	3	=⊥ o
すべり角	75, 90, 105°	3	ĕ T 9

②詳細パラメータスタディ

区分	パラメータ項目	パラメータ 変動範囲	ケース数	
敷地前面 最大水位上昇ケース	断層面上縁深さ	0, 2.5, 5km	3	
1,2号炉取水口 最大水位下降ケース	熊島王に結った	0.05 Fkm	0	計6
3号炉取水口 最大水位下降ケース	町周囲工稼冻さ	U, 2.3, 5KM	3	

数値シミュレーション結果(F_B-2断層)(概略パラメータスタディ)

数値シミュレーション結果一覧(F_B-2断層)(概略パラメータスタディ)

区分	計算値	断層パラメータの概要
敷地前面 最大水位上昇量	4.79m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=0.0km
3号炉取水口 最大水位下降量	3.37m	傾斜角 δ=45°、すべり角λ=90°、断層面上縁深さ d=0.0km
1号及び2号炉取水口 最大水位下降量	3.20m	傾斜角 δ=45°、すべり角λ=90°、断層面上縁深さ d=0.0km

数値シミュレーション結果(F_B-2断層)(詳細パラメータスタディ)

数値シミュレーション結果一覧(F_B-2断層)(詳細パラメータスタディ)

区分	計算値	断層パラメータの概要
敷地前面 最大水位上昇量	5.05m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=5.0km
3号炉取水口 最大水位上昇量	3.76m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=5.0km
3号炉取水口 最大水位下降量	3.40m	傾斜角 δ=45°、すべり角λ=90°、断層面上縁深さ d=2.5km
1号及び2号炉取水口 最大水位上昇量	3.60m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=5.0km
1号及び2号炉取水口 最大水位下降量	3.21m	傾斜角 δ=45°、すべり角λ=90°、断層面上縁深さ d=2.5km

[活断層研究会(1991)に一部加筆] 海域活断層分布

28

一連の断層による検討(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)

[基準断層モデル諸元]

29

断層パラメータ	F _s -10断層~ 岩内堆東撓曲~ 岩内堆南方背斜	備考		
モーメントマク゛ニチュート゛ M _w	7.70	武村 (1998) に基づくスケーリング則により 設定。		
断層長さ L	100.6km (80.7km+19.9km)	地質調査結果により設定。		
断層幅 ₩	21.21km	地震発生層の厚さ(15km)と傾斜角により 設定。		
すべり量 D	5.92m	M _w , L, Wにより設定。		
断層面上縁深さ d	Okm			
走向 0	北断層 173° 南断層 199°	地質調査結果により、西側傾斜の逆断層と 設定。		
傾斜角 δ	45°	日本海東縁部の傾斜角30~60°より設定。		
すべり角 λ	90°			

基準断層モデル図

数値シミュレーション結果(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)(概略パラメータスタディ)

数値シミュレーション結果一覧(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)(概略パラメータスタディ)

区分	計算値	断層パラメータの概要
敷地前面 最大水位上昇量	5.42m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=0.0km
3号炉取水口 最大水位下降量	3.87m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=0.0km
1号及び2号炉取水口 最大水位下降量	3.68m	傾斜角 δ=60°、すべり角λ=75°、断層面上縁深さ d=0.0km

31

数値シミュレーション結果(3号炉)(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)(概略パラメータスタディ)

数値シミュレーション結果(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)(詳細パラメータスタディ)

数値シミュレーション結果一覧(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)(詳細パラメータスタディ)

区分	計算値	断層パラメータの概要
敷地前面 最大水位上昇量	5.49m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=2.5km
3号炉取水口 最大水位上昇量	4.64m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=5.0km
3号炉取水口 最大水位下降量	4.24m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=2.5km
1号及び2号炉取水口 最大水位上昇量	4.54m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=5.0km
1号及び2号炉取水口 最大水位下降量	3.92m	傾斜角 δ=60°、すべり角λ=90°、断層面上縁深さ d=2.5km

33

数値シミュレーション結果(3号炉)(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜)(詳細パラメータスタディ)

2-4 日本海東縁部に想定される地震に伴う津波の検討

津波評価手法 〇土木学会(2002)に基づき、基準断層モデルを設定し、不確かさを考慮した数値シミュレーションを実施。

基準断層モデル

 ○1993年北海道南西沖地震の津波を再現する 波源モデルのM_W 7.84を下回らないようにM_W 7.85と設定。
 ○日本海東縁部に位置する東西幅50kmの帯状 の発生海域を想定。

[基準断層モデル諸元]

断層パラメータ	日本海東縁部	備考
モーメントマク゛ニチュート゛ M _w	7.85	1993年北海道南西沖地震の津波を再現するモ デルのM _W (7.84) を下回らないように設定。
断層長さ L	131.1km	武村 (1998)に基づくスケーリング則により設定。
断層幅 ₩	30, 17.3km	地震発生層の厚さ(15km)と傾斜角により設定。
すべり量 D	5.45, 9.45m	M _w , L, Wにより設定。
断層面上縁深さ d	Okm	
走向 θ	3, 183°	海底地形の特徴により西傾斜と東傾斜の2通りを 設定。
傾斜角 δ	30, 60°	
すべり角 λ	90°	

基準とする波源位置及びパターン

2-4 日本海東縁部に想定される地震に伴う津波の検討

パラメータスタディ

[パラメータスタディ]

 ①位置と走向を組合せた216ケースの数値シミュレーションを行い、敷地前面の水位 上昇及び取水口の水位下降に関して各々の最大ケースを抽出。
 ②上記で得られた最大ケースについて、傾斜角と断層面上縁深さを組合せた27ケースの数値シミュレーションを実施。

①概略パラメータスタディ

パラメータ

項目

南北方向

位置

東西方向

位置

(2)詳細ハフスーダ人ダナイ	②詳細/	ペラメー	-タス	タディ
----------------	------	------	-----	-----

区分		区分	パラメータ項目	パラメータ 変動範囲		ケース数			
敷坩	最大 ケース 3		敷地前面	傾斜角	45,	52.5, 60°	3	≡⊥o	
、水位		最大水位上昇ケース	断層面上縁深さ	0,	2.5, 5km	3	ē19		
2号				1,2号炉取水口	傾斜角	45,	52.5, 60°	3	=±0
最大水位下降ケース		断層面上縁深さ	0,	2.5, 5km	3	619 619			
3号炉			3号炉取水口	傾斜角	45,	52.5, 60°	3	=1.0	
最大水位下降ケーン		最大水位下降ケース	断層面上縁深さ	0	2.5, 5km	3	計9		

36

2-4 日本海東縁部に想定される地震に伴う津波の検討

数値シミュレーション結果 (概略パラメータスタディ)

数値シミュレーション結果一覧(概略パラメータスタディ)

区分	計算値	断層パラメータの概要
敷地前面 最大水位上昇量	6.87m	東西方向中央、西傾斜(δ=60°)のW=17.3kmの断層 を北へ10km移動、走向を基準+10°、断層面上縁深 さd=0.0km
3号炉取水口 最大水位下降量	5.19m	東西方向東端、西傾斜(δ=60°)のW=17.3kmの断層 を南北方向基準位置、走向を基準ー10°、断層面上縁 深さd=0.0km
1号及び2号炉取水口 最大水位下降量	4.97m	東西方向東端、西傾斜(δ=60°)のW=17.3kmの断層 を南北方向基準位置、走向を基準、断層面上縁深さ d=0.0km
2-4 日本海東縁部に想定される地震に伴う津波の検討

2-4 日本海東縁部に想定される地震に伴う津波の検討

数値シミュレーション結果(詳細パラメータスタディ)

数値シミュレーション結果一覧(詳細パラメータスタディ)

区分	計算値	断層パラメータの概要
敷地前面 最大水位上昇量	6.95m	東西方向中央、西傾斜(δ=52.5°)のW=17.3kmの断 層を北へ10km移動、走向を基準+10°、断層面上縁 深さd=0.0km
3号炉取水口 最大水位上昇量	4.83m	東西方向東端、西傾斜(δ=52.5°)のW=17.3kmの断 層を南北方向基準位置、走向を基準、断層面上縁深さ d=5.0km
3号炉取水口 最大水位下降量	5.79m	東西方向東端、西傾斜(δ=52.5°)のW=17.3kmの断 層を南北方向基準位置、走向を基準、断層面上縁深さ d=5.0km
1号及び2号炉取水口 最大水位上昇量	4.71m	東西方向東端、西傾斜(δ=60.0°)のW=17.3kmの断 層を南北方向基準位置、走向を基準-10°、断層面上 縁深さd=5.0km
1号及び2号炉取水口 最大水位下降量	5.71m	東西方向東端、西傾斜(δ=45.0°)のW=17.3kmの断 層を南北方向基準位置、走向を基準、断層面上縁深さ d=5.0km

2-4 日本海東縁部に想定される地震に伴う津波の検討

39

<u>39</u>

3. 地震以外の津波

○地震以外の津波として、以下を検討する。

1火山による山体崩壊に伴う津波
 2海底地すべりに伴う津波
 3陸上の斜面崩壊に伴う津波

41

渡島大島位置図

100 km

300

42

噴火前地形と噴火後地形及び最終地形変化量(1/2)

○山体崩壊に関する解析に当たっては、Satake (2007) に示されている渡島大島 周辺の測深図に基づく地形変化から噴火前と噴火後の地形変化を推定。

43

噴火前地形と噴火後地形及び最終地形変化量(2/2)

噴火前地形と噴火後地形の断面形状

44

採用したパラメータ(Kinematic landslideモデル)

入力データ	入力值等	備考
計算時間間隔∆t(s)	0.1	計算安定条件を満たすように設定。
計算時間(時間)	3	
比高変化 (m)	最大388	Satake (2007) による崩壊前後の地形を基にデータ化。
鉛直変位ライズタイム (s)	120	Satake (2007) に基づき設定。
変動伝播速度 (m/s)	40	Satake (2007) に基づき設定。

45

採用したパラメータ(二層流モデル)

入力データ	!	入力值等	備考
計算時間間隔∆t(s)		崩壊後5分まで:0.002秒 崩壊後5分以降:0.2秒	崩壊後5分までは計算が安定に進むよう∆tを小さく設定。 5分以降は計算安定条件を満たすように設定。
計算時間(時間)		6	
海水密度 (kg/m ³)		1,030	一般値を使用。
崩壊物密度 (kg/m	3)	2,000	松本ほか (1998) に基づき設定。
底面粗度係数	上層	0.03	土木学会 (2002) に基づき設定。
n (m ^{-1/3} •s) 下層		0.40	Kawamata et al. (2005)に基づき設定。
界面抵抗係数f _{int}		0.0	Kawamata et al. (2005)に基づき設定。
<mark>渦動粘性係数</mark> Ⅴ (m²/s)	下層	0.1	Kawamata et al. (2005)に基づき設定。

46

3-1 火山による山体崩壊に伴う津波

数値シミュレーション結果

区分	Kinematic landslide モデル	二層流モデル
敷地前面 最大水位上昇量	1.59m	1.53m
3 号炉取水口 最大水位上昇量	1.32m	0.69m
3 号炉取水口 最大水位下降量	1.01m	0.92m
1号及び2号炉取水口 最大水位上昇量	1.22m	0.60m
1号及び2号炉取水口 最大水位下降量	0.97m	0.63m

検討方針

○敷地周辺の海域において津波の波源として評価している日本海東縁部に位置し、F_B-2断層が認められる急崖地形である後志舟状海盆西縁付近を対象として、海底地形データ等に基づき、地すべり地形を抽出。

○抽出した地すべり地形のうち規模が最も大きいものについて数値シミュレー ションを実施。

○地すべり地形前後区間の等高線の分布状況や、地すべり固有の地形的特徴を考慮し、地すべり前地形の等高線を推定。

○そのうえで、津波の数値シミュレーションは、海底地すべりのシミュレーション 結果を波源とすることにより実施。

○地すべりによる津波発生モデルについては、火山による山体崩壊に伴う津 波の検討結果において、敷地に対して影響が大きい結果となった「Kinematic landslideモデル」の手法を用いる。

検討フロー

地すべり地形の抽出結果(1/2)

地すべり地形の抽出結果(2/2)

地すべり 地形	L 長さ (m)	W 幅 (m)	H 高低差 (m)	D 推定厚さ (m) Brune et al (2009)	長さ×厚さ (m ²)	規模の 順位	概略体積 (m ³)	体積の 順位	発電所 までの 距離 (km)
Α	2,000	1,200	180	56	111,111	3	44,000,000	4	45
В	2,200	2,000	230	61	134,444	2	90,000,000	2	45
С	2,000	1,600	280	56	111,111	3	59,000,000	3	50
D	1,000	1,000	260	28	27,778	7	9,000,000	7	50
E	3,000	3,100	350	83	250,000	1	258,000,000	1	53
F	1,400	2,200	140	39	54,444	6	40,000,000	5	55
G	1,700	1,000	280	47	80,278	5	27,000,000	6	56

規模の大きい地すべり地形として「E」を選定し、さらに詳細に検討

51

採用したパラメータ(FLOW-3D)

海水の密度 (kg/m ³)	1,030	一般値を使用。
海水の粘性係数 (Pa·s)	0.001	鈴木ほか(1980)に基づき設定。
海水の初期水面位置 (m)	T.P. +0.21	予測計算の計算潮位。
地すべり地塊の密度 (kg/m ³)	2,000	地すべり時に想定される地塊の土質状態(砂~礫、礫混り砂状が混在)に対して、東日本 高速道路㈱ほか(2006)、東日本高速道路㈱ほか(2007)に基づき設定。
地すべり地塊の粘性係数 (Pa・s)	10	高橋ほか(1993)の実験結果の平均値として設定。
地塊粒子の平均半径 (m)	0.05	地すべり時に想定される地塊の土質状態(砂~礫、礫混り砂状が混在)に対して,地盤工 学会 (2009) に基づき設定。
地塊粒子の抵抗係数	0.5	日本機械学会(2006)に基づき設定。
計算メッシュ間隔(m)	100	波源域の海底地形データ精度。
計算時間間隔 (s)	初期値0.01	計算安定条件を満たすように設定。
計算時間(s)	1,800	地塊の移動速度が十分に緩速になる時間を包絡するように設定。

地すべり地形のモデル化(1/2)

地すべり地形のモデル化(2/2)

地すべり地形の断面形状

地すべりシミュレーション結果

崩壊前

崩壊後(10分後)

採用したパラメータ(Kinematic landslideモデル)

	入力データ	入力值等	備考
-	計算時間間隔∆t(s)	0.1	計算安定条件を満たすように設定。
	計算時間(時間)	3	
_	比高変化 (m)	最大81	FLOW-3Dによる10分後の地形変化量から設定。
-	鉛直変位ライズタイム (s)	120	Satake (2007) に基づき設定。
m -	変動伝播速度 (m/s)	40	Satake (2007) に基づき設定。

数値シミュレーション結果(1/2)

区分	Kinematic landslide モデル
敷地前面 最大水位上昇量	0.37m
3号炉取水口 最大水位上昇量	0.32m
3号炉取水口 最大水位下降量	0.24m
1号及び2号炉取水口 最大水位上昇量	0.28m
1号及び2号炉取水口 最大水位下降量	0.23m

数値シミュレーション結果(2/2)

簡易評価式による検討

〇Watts et al. (2005) により津波の初期水位波形を計算したうえでHuber et al. (1997) の予測式により敷地前 面での津波水位の振幅を検討した。

● Watts et al. (2005)が提案する初期水位波形の予測式は、次式で表わされる。

● Huber et al. (1997) による水深と波高の関係式は、次式で表される。

 $H_2/H_1 = (d_1/d_2)^{1/4}$ (添え字は、地点1,2での値。ここでは、1:海底地すべり発生位置、2:敷地前面)

簡易評価式による検討結果

地すべり 地形	体積 (m ³)	体積の 順位	発電所前面 での振幅 (m)	地すべりEとの比
А	44,000,000	4	0.082	0.060
В	90,000,000	2	0.276	0.203
С	59,000,000	3	0.125	0.092
D	9,000,000	7	0.004	0.003
E	258,000,000	1	1.359	1
F	40,000,000	5	0.064	0.047
G	27,000,000	6	0.026	0.019

○E以外の地すべりにより予測される津波水位の振幅は、最大でEの20%程度。
 ○Eによる[簡易評価値/予測値]は30%程度。
 ○したがって、Eを選定して評価することで、問題ないと考える。

※現在、全てのケースについて、数値シミュレーションを実施中である。

60

地すべり地形の抽出

<u>60</u>

検討結果(川白)

地 す べ り 地 形 DB	当社の調査結果	その他	評価
		・北海道後志総合振興局(2013) 共和出張所、川白地すべり対策	 北緯43°13'、東経140°20' 付近に位置する。 空中写真判読の結果、17箇所の ブロックから構成される。 山側に地すべり地形縁辺部が開 析され、安定していると推定される ブロックが分布し、海岸線に向けて 小規模化していく。 また、海岸線付近では、土留柵工 やフリーフレームの対策がなされて いる。 海岸沿いに分布するブロックは小 規模(幅600m、長さ400m、厚さ30m程度)と推定される。 前面位置の水深は推定約10m。
防災科研の地すべり地形データ ベースには、多数のブロックからな る地すべり地形(幅約2.9km、長さ 約3.5km)が記載されている。	空中写真判読の結果、防災科研 のデータベースと整合する。 17箇所のブロックに分かれてい る。 山側に、地すべり地形縁辺部が 開析され、安定していると推定され るブロックが分布し、海岸線に向け て小規模化していく。 海岸線付近に小規模な滑落崖が 認められる。	昭和51年から急傾斜地崩壊防止 施設が施工されており、海岸線付近 では、土留柵工やフリーフレームの 対策がなされている。	

62

検討結果(兜岩)(1/2)

63

3-3 陸上の斜面崩壊に伴う津波

検討結果(兜岩)(2/2)

泊村 照岸

照岸地点では、判読したMm1段丘面付近で実施したボーリング調査より、基盤岩の上位に段丘堆 積物の分布を確認した。ボーリング調査で確認した段丘堆積物の上面の標高は、約19~25m。 調査結果から、旧汀線は照岸1-6~照岸1-8の間と推定される。

<u>63</u>

64

検討結果(堀株)

地 す べ り 地 形 DB	当社の調査結果	その他	評価
Contraction of the second		-	北緯43°02'、東経140°31' 付近に位置する。 地すべり地形は三角形に近い馬 蹄形を呈し、滑落崖は馬蹄形で比 高は数mと推定されるが、不明瞭で ある。 地すべりブロックは尾根状の緩斜 面の前面に幅100m程度の沖積低 地が広がることから、これらの堆積 物の滑動による津波を起こす恐れ はないと判断される。 前面位置の水深は推定約5m以 浅。
防災科研の地すべり地形データ ベースでは7箇所のブロックからな る地すべり地形が記載されている。	空中写真判読結果では、地すべ り地形は6箇所のブロックから構成 される。 地すべり地形は三角形に近い馬 蹄形を呈し、滑落崖は馬蹄形で比 高は数mと推定されるが、不明瞭で ある。 地すべりの基部には、幅100m程 度の沖積低地が分布し、海岸線と なっている。	_	

65

3-3 陸上の斜面崩壊に伴う津波

検討結果 (二つ岩)

地 す べ り 地 形 DB	当社の調査結果	その他	評価
		_	北緯42°56'、東経140°25' 付近に位置する。 空中写真判読で沖積錐であり、 地すべりではないと判断した。 前面位置の水深は推定約20m。
防災科研の地すべり地形データ ベースでは、小規模な6箇所からな る地すべりブロックが記載されてい る。	急勾配な川の出口に発達した扇 型をした急傾斜の堆積地形である と推定される。		

検討結果(弁慶岩)

地 す べ り 地 形 DB	当社の調査結果	その他	評価
TX-UP Reserved and the second se		—	北緯42°55'、東経140°25' 付近に位置する。 地すべり地形は、小規模なブロッ クから構成され地すべり方向に系 統性はない。 滑落崖は馬蹄形を呈し、その比高 は約30~40mであるが、開析され て不明瞭であり、古い地すべり地形 と考える。 前面位置の水深は推定約20m。
防災科研の地すべり地形データ ベースでは11箇所の地すべり地形 から構成され、それぞれの地形の規 模に系統性はない。大局的に北西 方向とそれ以外の方向の地すべり 地形が分布する。	空中写真判読結果では4箇所の ブロックから構成される。 滑落崖は馬蹄形を呈し、その比高 は約30~40mであるが、開析され て不明瞭である。 土塊ブロックは台地状で孤立した 丘や緩斜面が特徴である。		

67

3-3 陸上の斜面崩壊に伴う津波

まとめ

地点名	長さ L (m)	幅 W (m)	推定厚さ D (m)	概略体積 (m ³)	発電所まで の距離 (km)	備考	判定
川白	地すべり対策活	済みのため除外	_	-	24.0		文献では、地すべり地形は多数のブロックより形成され ている。空中写真判読結果から、山側のブロックは開析し ており、古く安定した地すべり地形と考えられる。 また、海岸線付近の小規模なブロックに対しては、地す べり対策が実施されており、滑落することはないと評価。
兜岩	空中写真判読 により	及び地質調査 J除外	-	-	5.0		文献の地すべり地形は6箇所の地形より形成されるが、 空中写真判読、地表地質踏査及びボーリング調査結果か ら、地すべりではないと評価。
堀株	沖積低地が広	「がるため除外	_	-	0.8		空中写真判読の結果から、地すべり地形は6箇所の緩 斜面より形成され、海岸沿いの沖積低地に連続する。 沖積低地の幅は約100m程度で広がることから、これら の堆積物の滑動による津波を起こす恐れはないと評価。
二つ岩	空中写真判	読により除外	-	_	10.6		文献では、地すべり地形は小規模な6箇所のブロックからなるが、空中写真判読結果から、沖積錐であり、地すべりではないと評価。
弁慶岩	500	250	36	2,000,000	14.8	厚さは幅の 1/7を採用 ³	空中写真判読の結果から、4箇所の開析された馬蹄形 台地から形成され、古いものと推定される。 また、それぞれの地すべり地形が小規模(全体で200万 ^{**} m ³)であり、地すべり方向に系統性はなく、さらに、距離も 約15kmであることから、発電所への影響は小さいと評価。 前面水深は推定約20m。

崩壊規模、距離等から敷地に影響を及ぼすものはない。

※高速道路調査会(1985)、地すべり地形の安定度評価に関する研究報告書、p.36。 「幅50m~100mは1/5~1/7、200m前後は1/7~1/10、300m以上は1/10~1/15」

4. 基準津波の策定

組合せに関する検討

○地震に伴う津波については、敷地に対して最も影響の大きい日本海東縁部に想定される地震に伴う津波を選定。
 ○地震以外の津波のうち火山による山体崩壊に伴う津波については、火山噴火に伴う事象であり、地震に伴う津波とは独立した事象であると考えられる。
 ○したがって、「日本海東縁部に想定される地震に伴う津波」と「海底地すべりに伴う津波」の組合せを選定した。

基準津波策定位置

 ○策定位置は,敷地西方約5kmの地点(水 深100m)の地点とした。

基準津波策定位置図

4. 基準津波の策定

69

検討方法

(1)「日本海東縁部に想定される地震に伴う津波」のうち、 ·敷地前面最大水位上昇量 ·3号炉取水口最大水位上昇量 ·3号炉取水口最大水位下降量 が発生するケースの水位時刻歴波形を選定。 ②「海底地すべりに伴う津波」の水位時刻歴波形を選定。 ①の水位時刻歴波形と②の水位時刻歴波形を同時発生を仮定して組合せ。 (3) ④追加検討として、地震の主要動の継続時間を念頭に置き、日本海東縁部に想 定される地震(による津波)の発生後、2分間のうちに「海底地すべりに伴う津 波」が発生するものとして、組合せ後の影響が最大となる水位時刻歴波形を抽 出。 5 ③及び④に、上昇側は朔望平均満潮位(T.P.+0.26m)、下降側は朔望平均 干潮位(T.P.-0.14m)を考慮して、評価点における津波水位を算定する。

4-1 基準津波の策定

評価点における波源の組合せ及び基準津波の時刻歴波形(同時発生ケース)

2110 1125	津波水位 (上昇側) (m)			津波水位 (下降側) (m)	
》 次 》 》 	敷地前面	1, 2号炉 取水口	3号炉 取水口	1, 2号炉 取水口	3号炉 取水口
基準津波① (日本海東縁部)	T.P.+7.3				
基準津波② (日本海東縁部)		T.P.+5.0			
基準津波③ (日本海東縁部+海底地すべりの組合せ)			T.P.+5.2	T.P6.0	
基準津波④ (日本海東縁部+海底地すべりの組合せ)					T.P6.1

※津波水位は最大水位上昇量及び最大水位下降量に、それぞれ、朔望平均満潮位 (T.P.+0.26m) 及び朔望平均干潮位 (T.P.-0.14m)を考慮している。

4-1 基準津波の策定

71

評価点における時刻歴波形(3号炉)(同時発生ケース)

4-1 基準津波の策定

評価点における波源の組合せ及び基準津波の水位(追加検討ケース)

2177 1725	津	波水位 (上昇側 (m)	津波水位 (下降側) (m)		
》 发	敷地前面	1, 2号炉 取水口	3号炉 取水口	1, 2号炉 取水口	3号炉 取水口
基準津波①' (日本海東縁部)	T.P.+7.3				
基準津波②' (日本海東縁部+海底地すべりの組合せ)		T.P.+5.2			
基準津波③' (日本海東縁部+海底地すべりの組合せ)			T.P.+5.3		
基準津波③'' (日本海東縁部+海底地すべりの組合せ)				T.P6.0	
基準津波④' (日本海東縁部+海底地すべりの組合せ)					T.P6.1

※津波水位は最大水位上昇量及び最大水位下降量に、それぞれ、朔望平均満潮位 (T.P.+0.26m) 及び朔望平均干潮位 (T.P.-0.14m)を考慮している。
4-1 基準津波の策定

評価点における波源の組合せ及び基準津波の時刻歴波形(追加検討ケース)

4-1 基準津波の策定

74

評価点における時刻歴波形(3号炉)(追加検討ケース)

4-2 超過確率の参照

評価方針	評価結果		
〇日本原子力学会(2011)に基づき、確率	評価点	津波水位	年超過確率
論的津波ハザード評価を実施。 ○評価点は、敷地前面及び3号炉取水口とした	敷地前面	T.P.+7.3m	4.43×10⁻⁵
評価結果	2 문년 평광 모	T.P.+5.2m	8.55×10⁻⁵
○基準津波による年超過確率は、いずれも 10 ⁻⁵ 程度である。	3574471	T.P6.1m	3.35×10⁻⁵

4-2 超過確率の参照

5. 二次的な影響に対する評価

砂移動に関する検討

[数値シミュレーションの計算条件]

		藤井ほか(1998)の手法	高橋ほか(1999)の手法	
	地盤高の 連続式	$\frac{\partial Z}{\partial t} + \alpha \left(\frac{\partial Q}{\partial x}\right) + \frac{E - S}{\sigma(1 - \lambda)} = 0$	$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q}{\partial x} + \frac{E - S}{\sigma} \right) = 0$	
	浮遊砂 濃度連続式	$\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} - \frac{E - S}{D} = 0$	$\frac{\partial(C_s D)}{\partial t} + \frac{\partial(MC_s)}{\partial x} - \frac{E - S}{\sigma} = 0$	
	流砂量式	小林ら (1996) の実験式 $Q = 80\tau_*^{1.5}\sqrt{sgd^3}$	高橋ほか(1999)の実験式 $Q = 21\tau_*^{1.5}\sqrt{sgd^3}$	
	巻き上げ量の 算定式	$E = \frac{(1-\alpha)Qw^2\sigma(1-\lambda)}{Uk_z \left[1 - \exp\left\{\frac{-wD}{k_z}\right\}\right]}$	$E = 0.012 \tau_*^2 \sqrt{sgd} \cdot \sigma$	
	沈降量の 算定式	$S = wC_b$	$S = wC_s \cdot \sigma$	
	摩擦速度の 計算式	log-wake 則 $u_*/U = \kappa / \{ \ell n(h/z_0) - 1 \}$ を積分した式より算出	マニング則より算出 $u_* = U \sqrt{gn^2 / D^{Y_3}}$	
$Z = Q = \tau *$ $S = U = \lambda$ $W = C_b = K$:水深変化量(n :単位幅,単位時 :シールズ数 :=σ/ρ-1 :流速(m/s) :空隙率 :局所的な外力 :土粒浮遊砂濃 :カルマン定数	n) t :時間 (s) 間当たりの掃流砂量 (m ³ /s/m) <i>σ</i> :砂の密度(kg/r <i>g</i> :重力加速度(m <i>D</i> :全水深(m) <i>n</i> :マニングの粗, のみに移動を支配される成分が全 速度(m/s) <i>C</i> :浮遊砂濃度(kg 度(kg/m ³) <i>C</i> : 広面浮遊砂堆 (=0.4) <i>h</i> :水深 (m)	x : 平面座橋 ϵ : 底面勾酉 ρ : 海水の裙 $f(s^2)$ d : 砂の粒役 M : U×D (r 度係数 $(s/m^{1/3})$ 流砂量に占める比率 $(=0.1)$ g/m ³) C_s : 浮遊砂々 積濃度 k_z : 鉛直拡青 Z_{ρ} : 粗度高さ	票 己の定数(=2.0) 否度(kg/m ³) 圣 (m) n ² /s) 本積濃度(kg/m ³) な係数 (m ² /s) ≤ (= <i>ks</i> /30)

ks :相当粗度(=*d*)

- 数 (=2.0)
- m^3

5. 二次的な影響に対する評価

数値シミュレーション結果(3号炉)

0 20m

- ・土木学会原子力土木委員会津波評価部会(2002):「原子力発電所の津波評価技術」、321p.
- ・羽鳥(1995):日本海沿岸における津波のエネルギー分布,地震,第2輯,第48巻,pp.229-233.
- Satake,K. (2007) :Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea, Earth Planets Space, Vol.59, pp.381-390.
- ・北海道(2013):平成24年度日本海沿岸の津波浸水想定の点検・見直し報告書,平成25年3月,北海道に津波被害をもたらす想定地震の再検討ワーキンググループ
- •Kanamori,H. (1977):The energy release in great earthquakes, J. Geophys. Res.,Vol.82,pp.2981-2987.
- ・武村雅之(1998):日本列島における地殻内地震のスケーリング則-地震断層の影響および地震被害との関連-,地震第2輯,第51
 巻,pp.211-228.
 ・活断層研究会編(1991):新編 日本の活断層-分布図と資料-,東京大学出版会,437p.
- ・阿部勝征 (1989):地震と津波のマグニチュードに基づく津波高の予測,東京大学地震研究所彙報,Vol.64,pp.51-69.
- ・後藤智明・小川由信(1982):Leap-frog法を用いた津波の数値計算法,東北大学工学部土木工学科資料,52p.
- •Mansinha,L. and Smylie,D. E. (1971): The displacement fields of inclined faults, Bulletin of the Seismological Society of America, Vol.61, No.5, pp.1433-1440.
- ・小谷美佐・今村文彦・首藤伸夫(1998):GISを利用した津波遡上計算と被害推定法、海岸工学論文集,第45巻,pp.356-360
- ・相田勇(1977):三陸沖の古い津波のシミュレーション,東京大学地震研究所彙報, Vol.52, pp.71-101.
- •Flow Science, Incorporated, (2011), "FLOW-3D User Manual Version 10.0", Santa Fe, New Mexico.
- ・防災科学技術研究所 (2010):地すべり地形分布図 第45集「岩内」,防災科学技術研究所研究資料 第339号.
- •Brune,S., Ladage,S., Babeyko,A.Y., Müller,C., Kopp,H., Sobolev,S.V. (2009): Submarine landslides at the eastern Sunda margin:observations and tsunami impact assessment. Natural Hazards, 54, 2, pp.547–562.
- ・日本原子力学会編(2011):原子力発電所に対する津波を起因とした確率論的リスク評価に関する実施基準・藤井直樹・大森政則・高 尾誠・金山進・大谷英夫(1998):津波による海底地形変化に関する研究,海岸工学論文集,第45巻,pp.376-380.
- ・高橋智幸・首藤伸夫・今村文彦・浅井大輔(1999):掃流砂層・浮遊砂層間の交換砂量を考慮した津波移動床モデルの開発,海岸工学 論文集,第46巻,pp.606-610.
- ・小林昭男・織田幸伸・東江隆夫・高尾誠・藤井直樹(1996):津波による砂移動に関する研究,海岸工学論文集,第43巻,pp.691-695.
- ・松本智裕・橋和正・今村文彦・首藤伸夫(1998):土石流による津波発生・伝播モデルの開発,海岸工学論文集,第45巻,pp.346-350
- •Kawamata, K., K. Takaoka, K. Ban, F. Imamura, S. Yamaki, and E. Kobayashi (2005) :Model of tsunami generation by collapse of volcanic eruption: The 1741 Oshima-Oshima tsunami, in *Tsunamis: Case Studies and Recent Developments*, edited by K. Satake, pp.79–96, Springer, New York.
- ・鈴木博・長嶋昭:高圧力下における海水の粘性係数,日本機械学会論文集(B編) 46巻 408号,pp.1574-1582.

- ・東日本高速道路㈱,中日本高速道路㈱,西日本高速道路㈱(2006):設計要領 第一集 土工編:p.1-44.
- ・東日本高速道路㈱,中日本高速道路㈱,西日本高速道路㈱(2007):設計要領 第二集 橋梁建設編:p.4-8.
- ・高橋保・小林幸一郎(1993):粘性土石流の流動機構に関する研究,京都大学防災研究所年報 第36号B-2,pp.433-449.
- ・地盤工学会(2009): 地盤材料試験の方法と解説-二分冊の1-,丸善,p.55.
- ・日本機械学会(2006):機械工学便覧基礎編α4流体工学,丸善,p.84.
- ・高速道路調査会(1985):地すべり地形の安定度評価に関する研究報告書p.36.
- Watts, P., S, T.Grilli, D.R. Tappin, and G.J. Fryer (2005) : Tsunami Generation by Submarine Mass Failure. II : Preditive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp. 298–310.
- •Huber,A.and W.H.Hager (1997):Forecasting impulse waves in reservoirs.Dix-neuvième Congrès desGrands Barrages C31:993-1005.Florence,Italy.Commission International des Grands Barrages,Paris.
- ・北海道(2010):平成21年度 津波シミュレーション及び被害想定調査業務(北海道日本海沿岸)報告書,平成22年3月,北海道総務部 危機対策局防災消防課.
- ・地震調査研究推進本部(2003):日本海東縁部の地震活動の長期評価について,平成15年6月,地震調査研究推進本部.
- ・秋田県(2012):地震被害想定調査,平成24年12月.
- ・岡村行信 (2002):新第三紀以降のひずみ集中帯,日本海東縁の活断層と地震テクトニクス 大竹政和・平朝彦・太田陽子編,東大出版会,pp.111-121.
- ·農林水産省構造改善局·農林水産省水産庁·運輸省港湾局·建設省河川局(1996):日本海東縁部地震津波防災設整備計画調査。
- ・北海道後志総合振興局(2013):共和出張所,川白地すべり対策.