泊発電所 敷地内の高位段丘に関するコメント回答

平成25年10月9日 北海道電力株式会社

コメント内容

海側に傾く地下構造と調和的に高位段丘が海側に傾いていることから,敷地の地下に活構造が存在する可能性も考え られるので,周辺の段丘調査の結果と併せて詳しく説明すること。

1. 敷地周辺の地質・地質構造と段丘面 P3
 2. 敷地内の地質・地質構造と段丘面 P28
 参考資料 P38

(1)積丹半島の概要

泊発電所は. 積丹半島南西基部の日本海に面した海岸部に位 置する。

積丹半島は、積丹岳、余別岳、八内岳等の山地が大部分を占め、 敷地の南東には岩内低地、共和台地及び岩内台地が広がる。

敷地周辺陸域については、地形・地質を考慮して、ニセコ火山地 よりも北方の積丹地域、ニセコ火山地南方の尻別川流域にあたる 尻別川地域及び磯谷山地~弁慶岬間の黒松内低地帯地域,弁 慶岬以西の弁慶岬西方地域に区分し、地質層序を設定している。

凡例

山 地

火山地

丘 陵

低地

台 地

(2) 積丹半島の地質・地質構造

積丹地域には、古第三系~新第三系の茅沼層、新第三系の古平層、神恵内層、余別層、第四系の野塚層、岩内層、発足層等が分布する。

敷地周辺の地質層序

沖積層

洞袋火建造堆植物

里松内层 黑松内层火砕岩颈

段丘堆積物等

知来川腰

派积层

二級用

2012 10

花崩岩類

的时期和

沖積層

政局局

未堂曆

二股层

写万部山火山岩縣

通商産業省資源エネルギー庁(1985)(1)では. 積丹半島 の第三系以下の地質構造は、大局的に半島の伸長方向と 同じNW-SE方向の軸を有する背斜構造を中核とし、この付 近に露出する基盤岩を最下底に、周辺に行くにしたがって 若干の褶曲、盆状構造、ドーム構造を伴いつつ上部の地層 が累重する関係を示しているとしている。また、背斜構造は、 一部で複背斜構造を示し,不連続でかつ湾曲しているとして いる。

 $\overline{\mathbb{X}}$

日本山火山岩類

+ + 八雲層

花瓣岩石

沖積層

三和层

站川縣

赤井川粘土層

赤井川火山岩類

•

· ·

111

ニヤコ水山市出物等

言軍導火山角機當層 Rauna

徒谷層・泥岩 健谷層・泥灰角機岩

洞袋火建造篱巷物

段丘雉積物等

使营造(

第四紀 更新世 発足層

**

39.5 F

完新世

斜新世 余預履

中新世

読新世

白亜紀

光第三紀

第四紀 ~新第三紀

沖積層

ニセコ火山環治物学 测量火硅流发植物

段丘堆積物等

野塚層・岩内層

神志内居

古平服

茅沼層 清新世 ~始新世

在圖書類

リヤムナイ展

10.02.22 LL デイサイ 石英規岩

58.0 石英西根岩 記号凡例

寬入岩類 安山岩

積丹半島の地質構造を規制するNW−SE方向の背斜構造を構成している基盤岩類・花崗岩類の南西側では、新第三系中新統の神恵内層、古平 層等が同斜構造で累重しており、沿岸部では、鮮新統の余別層、下部~中部更新統の野塚層等がこれらの地層を傾斜不整合で覆っている。 余別層は. 神恵内層を不整合で覆い. 神恵内層より緩傾斜で分布している。また. 山岸(1980)(2)では. 積丹半島内陸部で. 余別層相当層であ るトーマル川層が、神恵内層をほぼ水平に不整合で覆うとしている。

野塚層及び岩内層の第四系は、主に沿岸部、平野部に分布し、神威岬周辺では野塚層が、岩内平野周辺では岩内層が、新第三系を不整合で 覆って、ほぼ水平な構造を示す。

敷地周辺の地質断面図

積丹半島北部の神威岬周辺では野塚層の砂層が,新第三系を不整合に覆って分布し,ほぼ水平な構造を示している。

神威岬の野塚層露頭

神威岬の野塚層露頭(拡大)

(3)敷地近傍の地質・地質構造について

敷地近傍陸域の地質は、下位より、先第三系、古第三系、新第三系及び第四系からなる。

先第三系のリヤムナイ層及び花崗岩類,古第三系始新統〜新第三系下部中新統の茅沼層,新第三系下部〜上部中新統の古平層及び神恵内層は, 主に敷地北西の山地部に分布している。また,新第三系上部中新統〜鮮新統の余別層が堀株川河口周辺で確認されている。第四系は,下部〜中部更 新統の岩内層が共和台地及び岩内台地に,中部更新統の発足層が共和台地周辺に分布する。

敷地近傍の地質平面図

敷地近傍の山側では、大局的にNW-SE方向の背斜部を構成する先第三系及び新第三系の南西側では、新第三系 中新統の神恵内層. 古平層等が同斜構造をなし. 共和台地及び岩内台地では. 第四系下部~中部更新統の岩内層 は、新第三系を不整合に覆い、ほぼ水平な構造を示す。

敷地近傍の地質断面図

本層は、岩内平野等におい て丘陵背面を形成し、新第三 系を不整合で覆い、ニセコ火 山噴出物. 高位段丘堆積物及 び洞爺火砕流堆積物に不整 合で覆われている。

岩内層(岩内平野)

完新世 沖積層等 礫・砂・粘土 後期 低位段丘堆積物 高位段丘 発品 ^{完し} 現火物 Ht 中期 様・砂・シルト 砂岩・礫岩 安山岩質 火砕岩 岩内層 砂・得 前期 野塚層 Nss 鮮新世 安山岩質火砕岩 泥 岩 余別層 Y Ket 安山岩溶岩及び安山岩質火砕岩 後期 神恵内層 Kem 泥 岩 安山岩溶岩及び安山岩質火砕岩 上層部 Hut Hinsh 泥岩 Hint 安山岩溶岩及び安山岩質火砕岩 新 中期 古平層 中層部 デイサイト溶岩 及びデイサイト賞火砕岩 Hind HIs 砂岩 下層部 HIC 礫 岩 泥 岩 前期 Kot Ktr 安山岩溶岩及び安山岩質火砕岩 茅沼層 Ka 安山岩溶岩 渐新世 流紋岩溶岩及び流紋岩質火砕岩 Kr 始新世 喷新世 白亜紀 花崗岩類 花崗閃緑岩 Gr 先白亜紀 リヤムナイ層 Rs 頁岩・砂岩

層序表

地質時代

地層谷

岩層

洞爺火砕流堆積物

岸錐堆積物

Toya

at.

風化礫主体の堆積物に不整合で 覆われる

岩内層(共和台地)

礫・砂・粘土

(4)積丹半島西岸部の地形

積丹半島西岸部には,空中写真判読より,中位及び高位の海成段丘面が認められる。このうち,Mm1段丘面は,泊発電所付近〜泊村照岸にか けて連続的に分布し,泊村照岸以北では断続的に分布する。また,高位段丘面は,泊発電所〜泊村盃で断続的に認められる。積丹半島沿岸部 では,段丘面の傾動は,認められない。

なお,積丹半島西岸部の海成段丘面については,地形調査,地表地質踏査,ボーリング調査等を行い,段丘の分布高度を確認している。

主な調査位置(敷地近傍)

a. Mm1段丘面の調査

【照岸地点】

照岸地点では、判読したMm1段丘面付近で実施したボーリング調査より、基盤岩の上位に段丘堆積物の分布が確認される。ボーリング調査で確認した段丘堆積物の上面の標高は、約19~25m。調査結果から、旧汀線は照岸1-6~照岸1-8の間と推定される。

地形分類図及び地質断面図(泊村 照岸地点)

照岸地点では、Mm1段丘面が厚い扇状地性堆積物及び崖錐堆積物に覆われている。 また、照岸1-3では基盤岩の上位、照岸1-5では段丘堆積物の上位に洞爺火山灰が認められる。

照岸1-6では段丘堆積物の分布が認められるが、照岸1-7及び照岸1-8では段丘堆積物の分布が認められない。

コア写真(照岸1-6)

コア写真(照岸1-7)

コア写真(照岸1-8)

【滝ノ澗地点】

滝ノ澗地点では、判読したMm1段丘面付近の露頭において基盤岩の上位に段丘堆積物の分布が認められる。露頭で確認した段丘堆積物の上面の標高は、約17~20m。

[滝ノ澗地点①]

滝ノ澗地点①の露頭では、段丘堆積物上のローム層及びシルト層で洞爺火山灰が認められる。

:洞爺火山灰確認位置

滝ノ澗地点① 露頭1 柱状図

滝ノ澗地点① 露頭2 (国道側)柱状図

[滝ノ澗地点②]

滝ノ澗地点②の露頭では,段丘堆積物上の砂層で洞爺火山灰が認められる。

滝ノ澗地点②遠景

滝ノ澗地点② 露頭柱状図

【Mm1段丘面の調査結果】

段丘面調査では,積丹半島西部のMm1段丘面(MIS5e)の分布標高は,旧汀線付近で約25mと推定される。 調査範囲では分布標高に有意な差は認められず,また,地形調査より段丘面の傾動も認められないことから,少なくとも積丹半島西部に認められる新第三系の褶曲に係る活動は,後期更新世には及んでいないものと判断される。

積丹半島西部のMm1段丘面の分布標高

b. 高位段丘面の調査

【泊①地点】

泊Hm3-2付近では,標高約52~62mに高位段丘面が判読され,ボーリング調査結果により,基盤岩の上位に段丘堆積物が認められる。段丘 堆積物の上面の標高は約57m。

コア写真(泊Hm3-2)

【泊②地点】

泊-3付近では、標高約56~66mに高位段丘 面(Hm2段丘面)が判読され、ボーリング調査で は、基盤岩(標高約59m)の上位に扇状地性堆 積物または崖錐堆積物の分布が認められる。

泊-2付近では、明瞭な地形面は判読できな かったが、踏査により高位段丘(Hm3段丘)の分 布が推定され、ボーリング調査では、基盤岩の上 位に段丘堆積物の分布が認められる。段丘堆積 物の上面の標高は約41m。

泊-1付近では、Mm1段丘面が判読され、ボー リング調査では、基盤岩(標高約19m)の上位に 扇状地性堆積物または崖錐堆積物の分布が認 められる。

コア写真(泊-1)

コア写真(泊-2)

コア写真(泊-3)

【滝ノ澗地点】

泊Hm3-1付近では,標高約40~50mに高位段丘面が判読され,ボーリング調査結果により,基盤岩の上位に段丘堆積物が認められる。段丘堆 積物の上面の標高は約45m。

コア写真(泊Hm3-1)

【茶津地点】

茶津地点では,標高約46~52mに高位段丘面(Hm3段丘面)が判読され,ボーリング調査では,基盤岩の上位に段丘堆積物の分布が認められる。

段丘堆積物の上面の標高は約45~46mで、旧汀線は茶津-3~茶津-4の間と推定される。 基盤岩の分布から、標高約59~62mに高位段丘面(Hm2段丘面)の分布が推定される。

コア写真(茶津-2)

コア写真(茶津-4)

【高位段丘面の調査結果】

高位段丘面の調査では、Hm3段丘が標高40~45m付近、Hm2段 丘が標高55~65m付近に確認された。

これらの形成年代をそれぞれMIS7(約21万年前), MIS9(約33万 年前)とすると, Mm1段丘面から算出した隆起速度(約0.2m/千年) と概ね調和的である。

また, Mm1段丘面同様, 高位段丘面の標高にも有意な差は認められず, 地形調査より, 段丘面の傾動も認められない

【敷地周辺及び敷地近傍の第四系の地質構造と海成段丘面の分布について】

- ・敷地近傍は、新第三系中新統の古平層及び神恵内層が、積丹半島の伸長方向と同じNW-SE方向の軸を有する背斜構造の南西翼を構成する
 同斜構造を呈し、累重して分布するが、岩内平野では、これらの新第三系を第四系下部~中部更新統の岩内層が不整合で覆い、水平な堆積
 構造を示している。
- ・地形調査結果等より, 敷地近傍沿岸のMm1段丘面及び高位段丘面には, 傾動は認められず, 段丘面の分布標高についても有意な差が認められない。
- ・これらのことより, 敷地近傍では, 新第三系が海側に向かって同斜構造を示すものの, 下部~中部更新統の岩内層には, NW-SE方向の褶曲構 造の成長に関連するような構造は認められず, 高位段丘面にも傾動は認められない。

地時	』質 洋代	坩	1. 層 名	主な岩相	記事		
	完		盛土	礫・砂・粘土			
第	新		沖 積 層	礫・砂・粘土			
	世		崔錐Ⅱ堆積物	礫・砂・粘土			
		0000 #	位段丘堆積物	礫・砂・粘土	Hm2段丘面上の崖錐 I 堆積物を覆う火山灰 FT年代:0.20±0.03M a		
四	-						
紀	更	أحمحم					
1	新	高	位段丘堆積物				
	世		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	礫・砂			
			$\mathcal{M} = \mathcal{M} = $				
	鮮新世						
	中 新 世	火	上部層	凝灰角礫岩 角礫質安山岩 安山岩 援灰岩 含泥岩礫凝灰岩	軽石凝灰岩を伴う。 角礫質安山岩及び安山岩は溶岩である。 構成礫は安山岩及びデイサイトである。		
新第		中 神 志 内	中 部 層	凝灰角礫岩 凝 灰 岩 軽石凝灰岩	安山岩(溶岩)を伴う。 構成礫は安山岩及びデイサイトである。		
三紀		層	下部層	凝灰角礫岩 凝 灰 岩	安山岩(溶岩)、含泥岩礫凝灰岩を伴う。 構成礫は安山岩である。		
			凝灰質泥岩層	凝灰質泥岩 凝 灰 岩	凝灰角礫岩、含泥岩礫凝灰岩、 軽石凝灰岩を伴う。 安山岩(貫入岩)が狭在する。		

(1)敷地の地質について

敷地の基盤をなす地層は、新第三系上部中新統の神恵内層で あり、これを覆って第四系下部~中部更新統の岩内層、中部~ 上部更新統の段丘堆積物及び崖錐 | 堆積物、完新統の崖錐 || 堆積物及び沖積層が分布する。

~~~: 不整合

FT : フィッション・トラック

1.0Ma : 100万年

敷地の地質層序

敷地の基盤をなす神恵内層は,岩相の特徴から凝灰質泥岩層と火砕岩層に大別される。凝灰質泥岩層は,敷地北部の茶津川付近に分布する。 火砕岩層は,敷地全域に広く分布しており、3号原子炉建屋設置位置付近には安山岩が認められる。

地質平面図

神恵内層の地質構造は、大局的にほぼNW-SE走向の同斜構造で、傾斜は15°~50°程度である。

岩内層は1号原子炉建屋の北方から北西方に分布し、大局的に山-海方向に傾斜する神恵内層 を不整合に覆い、ほぼ水平な構造を示す。

地質断面図(X-X'方向)

0 50 100m

岩内層の分布状況(敷地北西端)

(2) 敷地内の地形

空中写真判読結果より、HO段丘面群、Hm2段丘面、Hm3段丘面等が認められる。 段丘面に傾動は認められない。

<段丘堆積物の分布>

3号炉調査時に3号炉北東側の標高60m付近の工事箇所で基盤(神恵内層)が緩やかな平坦面を形成していることを確認し,段丘堆積物等の分 布を確認している。また,ボーリング調査結果,トレンチ調査結果等より求められる基盤の分布標高から,標高90m付近,標高65m付近及び標高 45m付近で基盤岩に遷緩線が認められ,これらから分布が推定される段丘面と敷地近傍の高位段丘の分布標高は調和的である。

基盤高度分布及び段丘堆積物の推定分布範囲

崖錐堆積物に覆われていると推定さ れる段丘面。傾斜する地表面に対して、 平坦な地形面が広がる。

Hm2段丘掘削状況(工事法面 平成9年撮影)

【敷地の第四系と海成段丘面の分布について】

・敷地内では,新第三系上部中新統の神恵内層が山-海方向で同斜構造を呈するが,1号原子炉建屋の北方から北西方に分布する下部〜中部更新 統の岩内層は,これらを不整合に覆い,水平な構造を示す。

・地形調査結果より、敷地内では、H0段丘面群、Hm2段丘面、Hm3段丘面及びMm1段丘面が認められるが、これらの段丘面に傾動は認められない。

・敷地内におけるボーリング調査等推定される高位段丘面の分布標高は、敷地近傍の高位段丘面の分布標高と調和的である。

地質時代		MIS	年代	海成段丘	河成段丘	火山麓扇状地 (ニセコ火山地 周辺)	その他の地形	指標火山灰及び年代値	南関東との対比	
	完?	完新世				Af段丘面	VL2	砂丘 沖積錐	敷地近傍の1.12段丘を覆う推積物	会田遊歌
		後期	2	約2万年前		L13段丘面	VL1	□ 「旋錐 Ⅱ	(14C : 17, 080 ± 60y. B. P.)	立711/01/94
	更新世		3	 3 約5万年前 4 5a 約8万年前 5b 5c 約10万年前 		L12段丘面			支笏第1火山灰(約4.2~4.4万年前) クッタラ第2火山灰(約5万年前)	
						Lf1段丘面		Lla~Lle面 流れ山地形		
			5a			MI2段丘面		(尻別川流域)		三龄面
			5b 5c		Mm2段丘面			ER-002-SHIM		小原台面
			5d 5e	約12.5万年前	Mm1段丘面				洞爺火山灰(約11.2~11.5万年前)	下末吉面
第四紀 		中期	6			Mf1段丘面	VM	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	敷地内llm2段丘面上の崖錐 I 堆積物	多摩面群
			7以前	約20万年前以前	IIm3段丘面	1113段丘面	VH4 VH3		を覆う火山 灰 (FT:0.2±0.03Ma)	
					Hm2段丘面		VII2			
					1-160 5 35	Hf2段丘面		高位丘陵骨面		
						Hf1段丘面		(岩内平野周辺)		
					间段	丘面群				
		前期								
↑								·		

【参考】段丘面分類基準

段丘面区分		形態的特長	分布の特徴	分布標高 (m)	現河床からの 比高(m)	堆積物の特徴	指標火山灰または 年代値との関係	形成年代	模式的な 平面形状	露頭柱状図の例
高位段丘群	H0群	群 面の開析が進み、開 析谷は樹枝状に発達 する。面の外縁は丸 みを書び、面上には えん、戸花(の頂部に力 た、戸花(取)頂部に力 ずかな平坦面として 2 ろられるものもあ る。 3 3	海岸沿い、河川に沿って緩 斜面状に分布する。	100~190	_	著しく風化したくさ り確からなるものが タい。 ローム層が厚く覆う ことが多い。	Toyaの下位にローム層を挟 む。 敷地内のfm2段丘面上の崖錐 1 堆積物を覆う火山灰の FT年代:0.2±0.03Ma	MIS 7以前	P ₁	HF3 HF2
	Hf 1			120~340	_					
	Hm 1			80~100	_					
	Hf2			80~160	-					
	Hm2			60~110	_					
	Hf3			50~320	_					4.0 -
	Hm3	-		40~60	_					s.oL
	Mf1	Mf1 開析は進んでいるが、比較的面の保存 が、比較的面の保存はついている。 第一部で後分れしている。 部の外縁はややれることではわずかに最やかな起伏がみられる。 12	河川に沿って緩斜面状に分 布する。	20~300	10-40	夹面が褐色化した 礫、砂からなる。	ローム層最下部にToyaを挟 む。 Toyaf1に覆われる場合もあ る。	MIS 6	5 6 5e 5c ia~4	Mf2 Mm1 Mf1 環路町 名朝町 長77部 実際 良い市 名和町 島牧村 収品辺 得岸 秀都町 総津登 治村 浅ノ眉 単松内町 地野
山内印に弾	Mm 1		海岸沿いに最も連続よく, 広く分布する。面の内縁は 小さな谷に沿って入り込む ことが多い。	10~60	_		ローム層最下部にToyaを挟 む。	MIS 5e		
中位段丘群	Mm2		㎞1の1つ低位にあり,断片 的に分布する。	10~35	_		Kt-2に覆われる(奥村, 1983)	MIS 5c		
	Mf2		∬1の1つ低位にあり,河川 に沿って分布する。	10~50	10-25		Kt-2の下位にローム層を挟 む。	MIS 5a~4		
	Lf1	1 2 面の保存はよく、面 の外縁は角張ってい る。開催なけるは線状で 枝分かれしない。ま た、開催がほとん ど認められないもの 3 もある。	Lf2の1つ高位にあり、断片 的に分布する。	20~250	5-25	木風化の礫、砂から	段丘構成層直上をKt-2が覆 う。	MIS 4~3	IS 4~3 IS 3~2 MIS 2 MIS 1	Lf2 Lf1 単立 脱詞 単位の町日名 黒山向町中ノ川立坪 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
析齿齿后晋	Lf2		河川沿いに最も連続良く, 広く分布する。河川の両側 に対をなして分布すること が多い。	10~250	5-20		ローム層に覆われる。 共和町東ヤチナイのLf2段丘 を覆う堆積物の14C年代: 17080±60y. B. P.	MIS 3~2		スペール(n) THE 70 THE 139 日日 10 日 10 日 10 日日 10 日 10 日日 10 日日 10 日日 10 日 10 日日 10 日 10 1 10 1 10 1 10 1 10
PAIL 62.11.4F	Lf3		Lf2の1つ低位にあり,断片 的に分布する。	20~50	5-15	なる。	ローム層が認められない。	MIS 2		2.0 - 1.0 -
	Af		現河床との比高が小さく、 断片的に分布する。	10~250	5		_	MIS 1		

※1:段丘面の添え字のmは海成, 【は河成を示す。 ※2:Toya ⇒ 洞絶火山灰, Toya1 ⇒ 洞絶火砕流, Kt - 2クッタラ第2火山灰 ※3:分布標高は空中写真判読による。

泊発電所周辺の沿岸部には,主に新第三系上部中新統〜鮮新統の余別層,新第三系上部中新統の神恵内層,新第三系下部中新統〜上部中新統 の古平層が分布している。

神恵内層は調査範囲のほぼ全域に分布し、古平層は泊村兜北方~茂岩、神恵内村珊内周辺及び神恵内村川白周辺に、余別層は、古宇川右岸~神 恵内村赤石付近に分布する。

積丹半島の第三系以下の地質構造は、半島の伸張方向と同じNW-SE方向の軸とする非対称な背斜構造で特徴付けられ、本地域は、大局的にその 南西翼を構成する同斜構造を呈する。大局的な地層の走向は、泊発電所~兜では汀線方向に、兜より北方では汀線に対してやや北東に斜交し、神恵 内村大森より北方では汀線に対してやや西に斜交する。

波蝕棚等を構成する地質① K - 神恵内層(新第三系上部中新統)

- 分布 泊村堀株から神恵内村二ノ目川周辺にかけて分布
- 地質 ハイアロクラスタイト及び火山角礫岩, 凝灰角礫岩, 火山礫凝灰岩等の火砕岩を主体とする。また, 一部に溶岩, 枕状溶岩及び自破砕状溶 岩等の溶岩類並びに貫入岩が挟在する。

その他 古宇川左岸より南方では,成層構造が比較的発達している。厚層の溶岩類は少ないが,小規模な枕状溶岩が分布する。 神恵内村赤石より北方では,火砕岩の成層構造(単層の連続性)が乏しく,混入礫は不淘汰(不均質)であることが多い。また,厚層の溶岩が 挟在しているが,小規模な枕状溶岩は少ない。

<波蝕棚等の地形との関連>

K-1 貫入岩

侵食に対する抵抗力が最も強く、地形の高まりを形 成する。

貫入岩による地形の高まり。周辺 はハイアロクラスタイト。

K-2 溶岩類

侵食に対する抵抗力がハイアロクラスタイトや火砕 岩に比べ相対的に強く、地形の高まりを形成する。 自破砕状溶岩は、溶岩に比べ侵食に対する抵抗力 が弱い。

溶岩(自破砕部)

溶岩は高まりを形成し, 自破砕状溶岩は 相対的に低く侵食されている。

枕状溶岩による残丘状の高まり。周辺は 火砕岩。(一部ハイアロクラスタイトを伴う)

海蝕崖基部の溶岩。小規模な波蝕棚を形成する。

K-3 ハイアロクラスタイト 火砕岩に比べ高まりを形成しやすい。 礫径が大きく礫が多いほど、相対的に侵食に対する抵 抗力が強く高まりを形成しやすい。

ハイアロクラスタイト(礫径小)

背面の火山角礫岩で侵食が進行。前 面のハイアロクラスタイトが残存し、 高まりを形成している。

ハイアロクラスタイトが,火山角礫岩より 相対的に高い棚を形成する。

侵食抵抗

大→小

地形 高→低

ハイアロクラスタイト同士では礫が多い ほうが高い地形を形成する。

節理周辺は低くなる傾向がある。

K-4 火砕岩

基質が少ない岩相ほど、相対的に侵食に対 する抵抗力が強く高まりを形成しやすく、基質が 多い岩相ほど侵食の影響を受けやすい。

火砕岩(基質 少ない→多い)

砂質凝灰岩部が侵食され、侵食抵抗の大きい火山角礫岩がオーバーハングを形成。

相対的に基質の少ない部分が基質の多 い部分より, 一段高い高まりを形成する。

節理周辺は低くなる傾向がある。

岩相を反映し, 地層の走向方向に洗濯板 状の凹凸な波蝕棚が連続する

波蝕棚等を構成する地質②F-古平層(新第三系下部中新統〜上部中新統)

- 分布 泊村兜岬北方~茂岩. 神恵内村珊内周辺及び神恵内村川白周辺
- 地質 主に安山岩溶岩、デイサイト溶岩、玄武岩溶岩等の溶岩及び自破砕状溶岩等の溶岩類、ハイアロクラスタイトを主体とし、厚層な 貫入岩が挟在する。

その他 全体に変質しており、変質の程度は、構成礫が明瞭に残存する弱変質から観察では母岩の識別が困難な強変質まで認められる。 <波蝕棚等の地形との関連>

地形

F-1 貫入岩

侵食に対する抵抗力が最も強く、地形 の高まりを形成する。

貫入岩による地形の高まり

F-2 変質部

ほぼ一様に侵食される特徴が あり. 変質が強いほど侵食の影響 を受けやすい傾向が認められる。 溶岩類よりハイアロクラスタイトの 方が侵食を受けやすい。

溶岩が最も高い高まりを形成し、変質が強 くなるほど低くなる。

変質の強い溶岩は海面下に波蝕棚を作り、比較的変質の弱い部分が瘤 状の高まりを形成する。

ハイアロクラスタイト弱変質部

侵食抵抗 大→小 地形

高→低

ハイアロクラスタイト強変質部

ほぼ一様な岩層で全体に緑色変質を受けている。凹凸はほとんど認められず. 海面下に平坦な地形を作る。

波蝕棚等を構成する地質③ Y - 余別層(新第三系鮮新統)

分布 古宇川右岸~神恵内村赤石周辺

地質 泥岩,砂岩及び礫岩等の堆積岩が主体で,一部に安山岩質の火砕岩を伴う。

その他 固結度が低く,侵食されやすい。

<波蝕棚等の地形との関連>

Y-1礫岩

基質が少ない岩相ほど,侵食に対する抵抗力が強く高まりを形成しやすい。 基質が多い岩相ほど侵食の影響を受けやすい。

火山礫岩による高まり。基質部は侵食が進む。

含礫砂岩による地形。砂岩部は侵食され 礫だけが残る。

基質が粗粒で少ない火山礫岩は比較的侵食に対する抵抗力が強く、高まりを形成する。

基質の多い岩相の地域では侵食が進み, 殆んど波蝕棚を形成しない

沿岸部には, 波蝕棚(写真1), 岩礁様の地形(写真2), 岬から連続する尾根状の地形の背後が侵食された地形(主に標高5m以上。写真3,4)が認め られる。

波蝕棚が分布するのは、渋井~滝ノ澗周辺、茅沼周辺、泊~兜、盃~竜神岬、神恵内周辺、大森周辺、川白周辺である。

写真1 波蝕棚(泊村 茅沼) 波蝕棚の陸側に火山角礫岩, 沖側にハイアロ クラスタイトが分布する。

写真2 岩礁様の地形(ノーラン岬北方) 海蝕崖基部周辺に分布する溶岩が、岩礁様の 地形や局所的な波蝕棚を形成する。

写真3 背後が侵食された尾根状の地形 (泊村 茅沼)ハイアロクラスタイトに挟在する火 山礫凝灰岩が侵食されたことにより形成され た。

写真4 背後が侵食された尾根状の地形 (キナウシ岬南方)ハイアロクラスタイトに挟在 する火山礫凝灰岩及び凝灰角礫岩が侵食さ れたことにより形成された。

【泊村 滝ノ澗付近】

本地域は、神恵内層の火砕岩が海(西)側に傾 斜して分布する。

潮干帯に波蝕棚が広がり、波蝕棚に高まりは認 められない。波蝕棚前縁にランパート様の地形が 認められ地層の走向方向に伸びている。

写真1 標高約0~-0.2mの波蝕棚が広がる。波蝕棚は干潮時 に露出する。基盤岩は火山角礫岩、凝灰角礫岩及び火 山礫凝灰岩。

写真2 ランパート様の地形を形成する岩層。棚を作る地質の岩 相と比べ相対的に礫の多い火山角礫岩が、火山礫凝灰 岩を挟在して西傾斜で分布する。

【 泊村 茅沼付近】

本地域は、神恵内層の火砕岩及びハイアロクラスタ イトが海(西)側に傾斜して分布する。

A部は、火山角礫岩が潮干帯に波蝕棚を形成し、その前縁に侵食に対する抵抗力が強いハイアロクラスタ イトがランパート様の高まりを形成している。

B部はランパート様の地形の走向方向延長部にあたり、ハイアロクラスタイトがやや高まりを形成している。

写真1 侵食に対する抵抗性の違いにより、ハイアロクラスタイト の背後の火山角礫岩が差別侵食されている。

写真2 高まりを形成するハイアロクラスタイト。(礫径大)

【泊村 照岸付近】

本地域は、神恵内層の火砕岩、ハイアロクラスタイト及び 変質を受けた溶岩が分布する。

A部は、比較的基質が多い火砕岩及び変質した溶岩が潮 干帯に波蝕棚を形成される。

これに対し、B部は、礫の多いハイアロクラスタイトが分布 し、特に海蝕崖基部で高まりを形成しており、両地点におけ る高度差は、岩種、岩相の侵食に対する抵抗力の違いによ るものと考えられる。

写真1 変質した溶岩が波蝕棚 を形成し、自破砕状溶 岩、火山角礫岩がラン パート様の高まりを作る。

写真2 右記範囲の南端付近。基質が多い火砕岩が波蝕棚を形成する。

写真3 礫が多いハイアロクラスタイ トが斜面基部に向かって緩 やかに傾斜する高まりを作る。

【泊村 兜付近】

本地域は、神恵内層の火砕岩及びハイアロクラスタイト が分布する。

A部は、火山角礫岩が潮干帯に波蝕棚を形成し、その 前縁に侵食に対する抵抗力が強いハイアロクラスタイトが ランパート様の高まりを形成している。

B部は,侵食に対する抵抗力が強いハイアロクラスタイトが分布し,高まりを形成している。その高さは礫径の大小,礫の割合等により異なる。

凡.例

写真1 波蝕棚を形成する火砕岩は基質が侵食され、ハイアロクラスタイトに比べ 礫が浮いているように見える。

P lava: 枕状溶岩 g-Ss:含硼砂岩 3mitl H ジョイン Lava: 溶岩 Tb: 游灰角磯岩 Vcg:火山性礫岩 2~3m Ab:自破砕状溶岩 Hyalo:水冷破砕岩 Lt:火山礫凝灰岩 Cg: 課岩 Ho:角せん岩 1~2m Ss:砂岩 ald:変質 写真2 Vh (cg 85W (礫少ない) (礫多い)

写真2 兜岬の地形は、ハイアロクラスタイトの礫径と礫の割合で高さが異なる。

【泊村 茂岩付近】

A部は, 古平層の溶岩類が分布し, 変質を受けた自 破砕状溶岩, 強変質の溶岩類が潮干帯に波蝕棚を形 成している。一方, 岬の先端付近では, 侵食に対する 抵抗力が強い貫入岩とそれに挟在する弱変質のハイ アロクラスタイトが高まりを形成している。

B部は,神恵内層のハイアロクラスタイトが分布し,礫の割合,変質の程度により,形成する地形の高さが異なる。

写真1 変質した自破砕状溶岩が潮干帯に波 蝕棚を形成している。左は貫入岩が形 成する高まり。

写真2 ①では礫が少ないハイアロクラスタイトが波蝕棚、②では低温変質を 受けたハイアロクラスタイトが1段低い波蝕棚を形成する。また、③で は侵食に対する抵抗力が相対的に強い礫の多いハイアロクラスタ イトがランパート様の高まりを形成する。

【神恵内村 祈石付近】

本地域は、神恵内層の火砕岩が分布し、潮干帯に波蝕 棚を形成する。火砕岩は、基質が少ない岩相が高まりを作 る。本地点の地質構造は汀線方向と斜交することから、 高まりは、走向方向に伸び、単層毎の侵食に対する抵抗 力の違いが反映された地形を形成する。

写真1 火山角礫岩と凝灰角礫岩の互層が成層構造で繰り返す。基質の 少ない岩相はやや高い高まりを走向方向に形成する。

写真2 相対的に基質の少ない岩相はやや高い高まりを形成する。

【神恵内村 大森付近】

本地域は、神恵内層の溶岩、自破砕状溶岩、 ハイアロクラスタイト、火砕岩が分布する。 火砕岩及び自破砕状溶岩が潮干帯に波蝕 棚を形成し、その前縁にランパート様の高まりを 形成している。また、相対的に侵食に対する抵 抗力の強い溶岩やハイアロクラスタイトが局所 的に分布し、高まりを形成する。

写真1 自破砕状溶岩で形成される波蝕棚

【神恵内村 川白付近】

本地点は、古平層の溶岩および自破砕状溶岩、ハイアロク ラスタイトが分布する。

強変質部が潮干帯に波蝕棚を形成し、相対的に侵食に対 する抵抗力の強い弱変質部がやや高い高まりを作る。

写真1 緑色変質した基盤岩で形成される波蝕棚。変質の弱い溶岩部等が高まりを 形成する。

泊発電所周辺の沿岸部では, 波蝕棚が主に渋井~滝ノ澗周辺, 茅沼周辺, 泊~兜, 盃~竜神岬, 神恵内周辺, 大森周辺, 川白周辺に分布する。 各地点で潮干帯に波蝕棚が確認されるが, 波蝕棚と相対的に標高が高い地形は, 波蝕棚を形成する地質に対して, 侵食に対する抵抗力が強い岩種, 岩相で形成されており, 本地域における波蝕棚等の地形の高度差は, 地形を形成する岩種の侵食に対する抵抗力の違いによるものと推定される。

参考文献

- (1)通商産業省資源エネルギー庁, 1985,昭和59年度広域調査報告書 積丹地域.
- (2) 山岸宏光, 1980, 5万分の1地質図幅「神恵内」及び同説明書,北海道立地下資源調査所.
- (3) 山岸宏光, 1986, 島弧横断ルートNo.1 (積丹岬・茅沼ー古平),地質図・地質断面図及び同説明書,北村信編 新生代東北本州弧地質資料集.