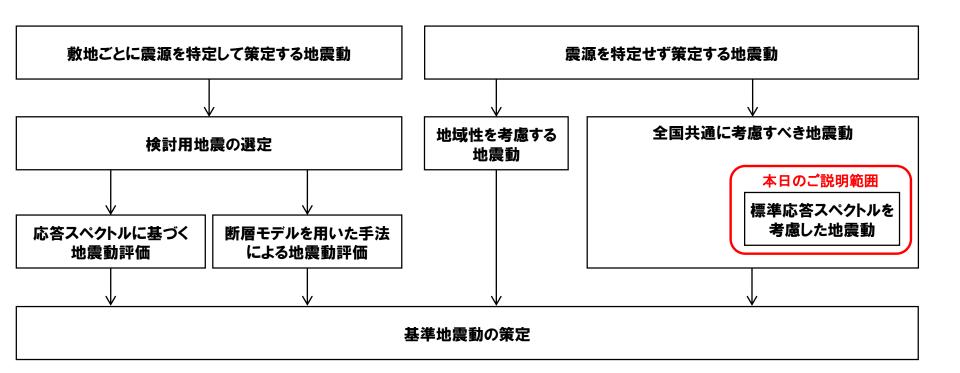
無断複製·転載等禁止

資料3-1


泊発電所3号炉標準応答スペクトルを考慮した地震動評価について

令和4年1月14日 北海道電力株式会社

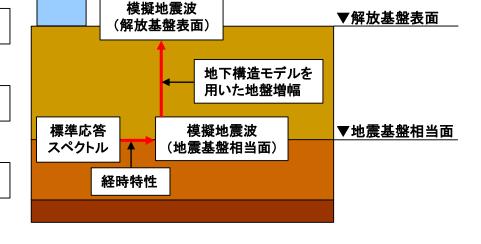
1.	標準応答スペクトルを考慮した地震動について・・・・・・・	4
2.	地下構造モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3.	模擬地震波の作成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20

本日のご説明範囲

1. 標準応答スペクトルを考慮した地震動について

1. 標準応答スペクトルを考慮した地震動について

標準応答スペクトルを考慮した地震動


- ○2021年4月21日に改正された実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈等を踏まえ、 泊発電所における標準応答スペクトルを考慮した地震動評価を実施する。
- ○標準応答スペクトルを考慮した地震動評価は、以下の通り、①地下構造モデルの設定、②地震基盤相当面における模擬地震波の作成、③解放基盤表面における地震動の設定、の流れで検討を実施する。
- ① 地下構造モデルの設定

② 地震基盤相当面における模擬地震波の作成

③ 解放基盤表面における地震動の設定

標準応答スペクトルを考慮した地震動の 評価の流れ

標準応答スペクトルを考慮した地震動の 評価のイメージ

敷地ごとに震源を特定して策定する地震動評価に用いた地下構造モデルの設定方法

- ○実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈では、解放基盤表面までの地震波の伝播特性を応答スペクトルの設定に反映することが求められている。
- ○地震基盤から解放基盤表面までの地下構造モデルとしては、敷地ごとに震源を特定して策定する地震動の断層モデルを用いた手法による地震動評価において用いている地下構造モデル(2021年10月22日審査会合、以下、既往の地下構造モデルという。)があり、以下の通り設定されている。
 - ・敷地内・敷地周辺の調査結果・地震観測記録を活用して設定
 - ・調査結果等がない場合、他機関の地下構造モデル等に基づき設定

①標高 Om~ -250m : 地震観測点におけるボーリング調査・地震観測記録による同定解析

②標高 -250m~ -990m : 1号機原子炉建屋位置におけるボーリング調査

③標高 -990m~-2000m : 弾性波探査·文献

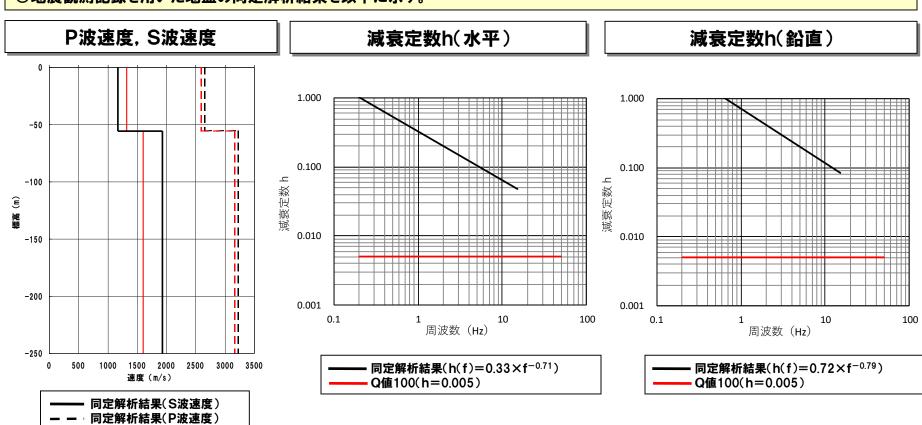
4.標高-2000m~: 他機関の地下構造モデル

標高 (m)	層厚 (m)		密度 ρ (g/cm³)	S波速度 Vs (m/s)	P波速度 Vp (m/s)	Q値	
0~ -56 -56~	56 194	地震観測点 PS 検層結果	地震観測点 ボーリングデータ			地震観測記録による 同定解析結果を基に 安全側に設定	
-250 -250~ -430	180	1号機原子炉建屋	1号機原子炉建屋 ボーリングデータ	1号機原子炉建屋 PS 検層結果			
-430~ -990	560	PS 検層結果				標高-250m 以浅	
-990~ -2000	1010		ρ=0.31Vp ^{1/4} 物理探査 ハンドブック (1999)	Vp と Vs の関係式 により設定 太田ほか(1985) 弾性波 探査結果		の設定値を用いる	
-2000 ~	-	-	防災科学技術研究所(2005)				

敷地ごとに震源を特定して策定する地震動評価に用いた地下構造モデル

○既往の地下構造モデルは以下の通りであり、地震基盤を標高-2000m、解放基盤表面を標高0mとしている。

標高	層厚	密度 $ ho$	S波速度	P波速度	Q値
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	は
0~-56	56	2.1	1175	2660	100
-56~-250	194	2.2	1935	3230	100
-250~-430	180	1.9	1350	2700	100
-430~-990	560	1.9	1560	3100	100
-990~-2000	1010	2.5	2400	4500	100
-2000~	_	2.8	3500	6400	150


✓ 解放基盤表面

◁ 地震基盤

既往の地下構造モデル

地震観測記録を用いた地盤の同定解析(既往の地下構造モデル)

○地震観測記録を用いた地盤の同定解析結果を以下に示す。

○同定解析によるP波速度・S波速度の傾向は、 PS検層結果と概ね整合。

PS検層結果(S波速度)PS検層結果(P波速度)

- ○同定解析によるP波速度・S波速度を用いて、 標高-250m以浅の地下構造モデルを設定。
- ○地下構造モデルの設定では、同定解析により得られた減衰定数を基に、地震動評価上安全側にQ値=100(減衰定数h=0.005)としている。

地下構造モデルの検討方針

- ○既往の地下構造モデルに対して、以下の検討を行うとともに、地震基盤相当面を設定する。
- ○既往の地下構造モデルにおける減衰定数の設定は、日本海東縁部で発生した1993年北海道南西沖地震および余震の3地震の地震観測記録のみを用いて同定解析(以下、既往の同定解析という。)を実施していることを踏まえ、同定解析結果に余裕を考慮して、地震動評価上、大きいQ値(小さい減衰定数)を設定している。
- 〇一方で、泊発電所では、更なる安全性・信頼性の向上を目的に、継続的に敷地地盤における地震観測を実施し、観測データの取得に 努めてきており、2018年に発生した平成30年北海道胆振東部地震について、敷地で比較的大きな観測記録が得られている。
- 〇以上を踏まえ、新たに得られた平成30年北海道胆振東部地震を含めた地震観測記録を用いて、改めて同定解析を行い、既往の地下構造モデルの減衰定数の検証を行う。
- ○なお、標高-250m以浅で地震観測記録が得られていることを踏まえ、標高-250m以浅について、改めて評価を行う。
- ① 北海道胆振東部地震を含めた地震観測 記録を用いて、改めて地盤同定を実施 ⇒P11~

② 改めて実施した同定解析結果と既往の同 定解析結果との比較検討を実施 ⇒P14

③ 比較検討結果を踏まえ、地下構造モデルのQ値(減衰定数)を検証 ⇒P15~

標高	層厚	密度 $ ho$	S波速度	P波速度	Q値
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	QIE.
0~-56	56	2.1	1175	2660	100
-56~-250	194	2.2	1935	3230	100
-250~-430	180	1.9	1350	2700	100
-430~-990	560	1.9	1560	3100	100
-990~-2000	1010	2.5	2400	4500	100
-2000~	_	2.8	3500	6400	150

◁解放基盤表面

⇒ 地下構造モデル の検証

> (Q値(減衰定数) の検証)

10

◁地震基盤

既往の地下構造モデル

泊発電所における観測記録一覧

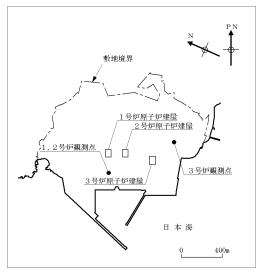
No.	地名または地震名	年月日	震央位置				震央距離 (km)	(標高+2.3m)	
			北緯	東経				NS	EW
1	1993年釧路沖地震	1993/01/15 20:06:07	42.920	144.353	101	7.5	313	11	5
	1993年北海道南西沖地震	1993/07/12 22:17:11	42.782	139.180	35	7.8	113	49	54
	積丹半島北西沖	1993/07/12 23:01:49	43.135	139.533	37	4.7	81	1	2
	積丹半島北西沖	1993/07/12 23:04:24	43.022	139.457	35	5.4	86	5	- 11
	北海道南西沖	1993/07/13 03:10:55	42.665	139.245	22	4.7	112	1	1
	北海道南西沖	1993/07/13 03:17:20	42.930	139.360	32	4.8	95	1	1_
	北海道南西沖	1993/07/13 03:25:56	42.887	139.232	20	4.8	106	2	2
	北海道南西沖	1993/07/13 04:50:06	42.838	139.310	6	4.3	101	1	1
	積丹半島北西沖 北海道南西沖	1993/07/13 05:54:40 1993/07/13 06:46:52	43.093 42.692	139.327 139.320	26	4.5	97 105	1	1
	北海道南西冲 積丹半島北西沖	1993/07/13 07:34:15	43.012	139.520	28	4.4	81	1	2
	北海道南西沖	1993/07/13 10:16:49	42.872	139.475	1	4.4	87	1	1
	北海道南西沖	1993/07/13 14:32:52	42.613	139.240	24	4.2	114	1	1
	北海道南西沖	1993/07/13 16:48:53	41.958	139.375	30	3.8	152	0.2	0.2
	北海道南西沖	1993/07/13 21:36:25	42.683	139.412	0	5.2	98	3	5
	北海道南西沖	1993/07/14 00:25:18	42.865	139.223	29	4.7	107	1	2
	北海道南西沖	1993/07/14 17:18:27	42.933	139.300	32	4.4	100	1	1
18	積丹半島北西沖	1993/07/14 17:21:41	43.048	139.287	22	3.9	100	1	1
19	積丹半島北西沖	1993/07/15 02:34:17	43.055	139.323	31	3.7	97	1	1
	北海道南西沖	1993/07/15 11:01:26	42.430	139.308	29	4.7	119	1	1
	積丹半島北西沖	1993/07/15 11:47:29	43.082	139.263	32	4.3	102	2	4
	積丹半島北西沖	1993/07/15 12:12:42	43.262	139.380	31	5.0	95	1	1
	積丹半島北西沖	1993/07/16 04:36:10	43.238	139.355	36	4.3	97	1	1
	北海道南西沖	1993/07/16 04:37:36	42.647	139.128	16	5.3	121	1	1
25		1993/07/16 21:55:02	43.008	139.405	38	3.8	90	2	4
26		1993/07/24 02:22:40	42.990	139.278	27	3.6	101	1	1
27		1993/07/25 03:46:54	42.498 41.958	139.330	35 24	4.6 6.3	114 131	7	1 5
28	1993年北海道南西沖地震最大余震 1994年北海道東方沖地震	1993/08/08 04:42:43 1994/10/04 22:22:56	43.375	139.882 147.673	28	8.2	583	4	5
	1999年積丹半島北西沖	1999/03/15 18:44:54	43.416	139.177	28	4.5	116	2	1
	根室半島沖	2000/01/28 23:21:08	43.008	146.744	59	7.0	508	2	1
	青森県東方沖	2001/08/14 05:11:24	40.996	142.437	38	6.4	277	1	1
	宮城県沖	2003/05/26 18:24:33	38.821	141.651	72	7.1	478	1	1
	2003年十勝沖地震	2003/09/26 04:50:07	41.779	144.079	45	8.0	325	7	8
	十勝沖	2003/09/26 06:08:01	41.710	143.692	21	7.1	300	3	3
36	十勝支庁南部	2004/06/11 03:12:10	42.322	143.131	48	5.2	229	1	1
37	釧路沖	2004/11/29 03:32:14	42.946	145.276	48	7.1	388	-	-
38	根室半島南東沖	2004/12/06 23:15:11	42.848	145.343	46	6.9	395	-	-
39	留萌支庁南部	2004/12/14 14:56:10	44.077	141.700	9	6.1	150	1	2
	釧路沖	2005/01/18 23:09:06	42.876	145.007	50	6.4	367	1	1
	宮城県沖	2005/08/16 11:46:25	38.150	142.278	42	7.2	563	1	1
	北海道西方沖	2005/12/13 06:01:37	43.209	139.414	29	5.5	91	-	-
	北海道南西沖	2010/03/30 10:02:51	43.192	138.578	25	5.8	158	2	3
	東北地方太平洋沖地震	2011/03/11 14:46:18	38.104	142.861	24	9.0	583	3	2
45	岩手県沖 岩手県沖地震	2011/03/11 15:06:10 2011/06/23 06:50:50	39.045 39.948	142.398 142.591	29 36	6.5	471 384	1	1
	宮城県沖	2011/04/07 23:32:43	38.204	141.920	66	7.2	550	_	_
48		2011/04/07/23:32:43	38.032	143.507	34	7.3	611	0.4	0.3
	一陸// 十勝地方南部	2012/08/25 23:16:17	42.328	143,111	49	6.1	227	1	1
50		2012/12/07 17:18:30	38.020	143.867	49	7.3	625	- '	- '
51	十勝地方南部	2013/02/02 23:17:36	42.702	143.227	102	6.5	225	1	1
52	胆振地方中東部	2014/07/08 18:05:24	42.648	141.267	3	5.6	75	2	2
53		2016/01/14 12:25:33	41.970	142.800	52	6.7	222	1	2
	内浦湾	2016/06/16 14:21:28	41.948	140.987	11	5.3	127	_	_
55	北海道西方沖	2016/12/08 19:58:55	43.543	140.720	11	4.5	59	-	-
56		2018/09/06 03:07:59	42.690	142.007	37	6.7	128	7	7
57		2018/09/06 03:20:11	42.578	141.942	31	5.5	127	-	-
58		2018/09/06 06:11:30	42.682	142.012	36	5.4	129	-	_
59		2018/09/30 17:54:04	42.548	141.988	37	4.9	132		
	北海道南西沖	2018/11/12 10:44:52	42.810	139.223	33	4.4	108	1	2
61	胆振地方中東部	2019/02/21 21:22:40	42.765	142.003	33	5.8	125	1	2
62	十勝地方南部 四海地方内東部	2019/04/28 02:24:47	42.560 42.710	142.878 142.020	102 128	5.6 5.4	201 128	1	1
	<u>胆振地方中東部</u> 福島県沖	2021/01/27 14:06:52 2021/02/13 23:07:51	37.728	141.698	55	7.3	598		
04	田	2021/02/10 20.07:01	31.120	141.030	33	1.3	J30	_	_

- ○地盤同定解析に用いる検討対象地震については、泊発電 所で観測された左記の地震を対象とする。
- ○左記の地震のうち、適切な伝達関数を評価するため、震央 距離200km以内の地震、かつ、泊発電所における標高 +2.3m観測点の最大加速度5Gal以上の記録を選定する。

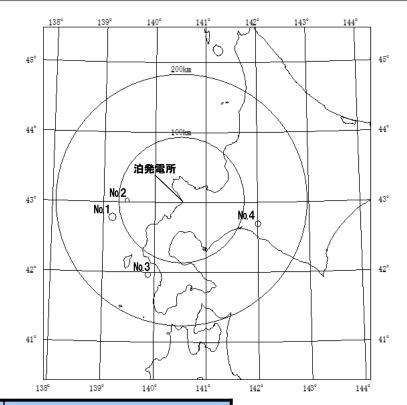
泊発電所において観測された地震 (1993年1月~2021年2月:64地震)

震央距離200km以内の地震 かつ 最大加速度5Gal以上の記録を選定

地盤同定解析に用いる検討対象地震


1993年北海道南西沖地震 積丹半島北西沖 (1993年北海道南西沖地震·余震) 1993年北海道南西沖地震·最大余震 平成30年北海道胆振東部地震

1923年~2012年 気象庁地震カタログ 2013年以降 気象庁ホームページ -:3号炉観測点でのみ観測された地震


地震観測記録を用いた減衰定数の同定解析

○標高0m~-250mの減衰定数は平成30年北海道胆振東部地震を 含めた4つの地震観測記録を用いた同定解析により設定。

同定解析に用いた地震観測記録

配置図

地震計の設置レベル

No	発生年月日	震央	位置	深さ	マグニ チュード	震央 距離	地 名
INO	先生平月口 	東経(゜)	北緯(°)	(km)	M	(km)	(地震名)
1	1993. 7.12	139.180°	42.782°	35	7.8	113	北海道南西沖 (1993年北海道南西沖地震)
2	1993. 7.12	139.457°	43.022°	35	5.4	86	積丹半島北西沖 (1993年北海道南西沖地震・余震)
3	1993. 8. 8	139.882°	41.958°	24	6.3	131	北海道南西沖 (1993年北海道南西沖地震・最大余震)
4	2018.9.6	142.007°	42.690°	37	6.7	128	胆振地方中東部 (平成30年北海道胆振東部地震)

※ 1, 2号炉観測点で観測

※ 地震の諸元は気象庁地震カタログ

地震観測記録を用いた減衰定数の同定解析

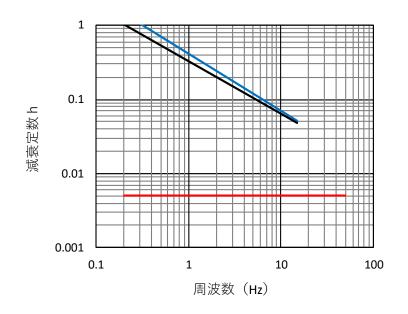
13

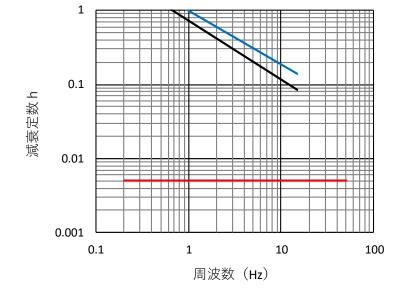
- ○標高0m~-250mの減衰定数について、地震観測記録の観測点間の伝達関数に適合するように同定。
- ○密度はボーリングデータ、層厚および層数はPS検層結果に基づき設定。
- ○P波速度およびS波速度は、既往の地盤モデルの値で固定。
- ○減衰定数は周波数依存型減衰とする。

 $h(f)=h_0\times f^{-\alpha}$:周波数

> h_o: 1Hzにおける減衰定数 α: 周波数依存の度合い

○同定された地盤モデルによる伝達関数は、観測記録の伝達関数と傾向が概ね整合している。

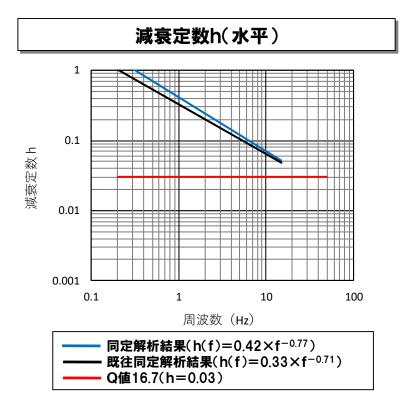

伝達関数



地震観測記録を用いた減衰定数の同定解析

減衰定数h(鉛直)

14



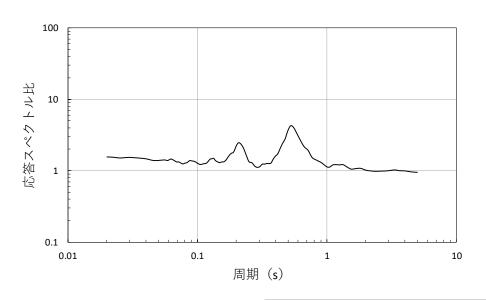
同定解析結果(h(f)=1.00×f-0.72) 既往同定解析結果(h(f)=0.72×f-0.79) Q値100(h=0.005)

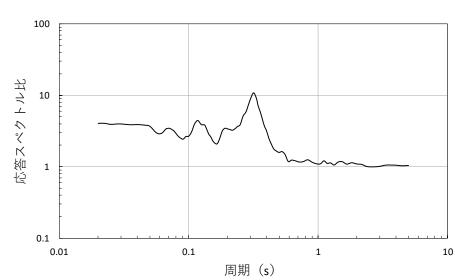
- ○平成30年北海道胆振東部地震を含めた地震観測記録を用いて改めて同定解析を行い、既往の地下構造モデルの減衰定数を検証 した結果,既往の同定解析結果と概ね同様の傾向にあり,既往の地下構造モデルで設定している減衰定数0.5%よりも大きな減衰が 得られていることを確認した。
- ○また、今回の同定解析の結果が既往の同定解析結果と概ね同様の傾向にあることから、観測記録を追加することで評価結果の信頼 性が向上していると考えられるとともに、既往の同定解析においても、地盤の減衰特性は、評価できているものと考えられる。

地下構造モデルの設定(減衰定数の設定)

- ○平成30年北海道胆振東部地震の観測記録を含めた地震観測記録を用いて同定解析を行った結果、既往の同定解析と概ね同等の 結果が得られたことから、両者ともに地盤の減衰特性は、評価できているものと考えられる。
- ○また、平成30年北海道胆振東部地震の観測記録を踏まえた同定解析結果および既往の同定解析結果ともに減衰定数4%以上が得 られていることから、既往の地下構造モデルで設定した減衰定数は、大きな裕度を持った設定となっていると考えられる。
- 〇以上を踏まえるとともに、地震動評価において不確かさを考慮する観点から、減衰定数を一定減衰、かつ、減衰定数3.0%として設定 する。

減衰定数h(鉛直) 0.1 减衰定数 h 0.01 0.001 0.1 1 10 100 周波数 (Hz) 同定解析結果(h(f)=1.00×f-0.72) 既往同定解析結果(h(f)=0.72×f-0.79) Q値16.7(h=0.03)


地下構造モデルの設定(応答スペクトルによる検証)


- ○前頁で設定した減衰定数の検証のため、減衰定数を3.0%と設定した地下構造モデルを用いて1次元波動論に基づき推定した標高 +2.3mにおける応答スペクトルと同位置で得られた地震観測記録の応答スペクトルとの比較を実施する。
- ○1次元波動論に基づき推定する標高+2.3mにおける応答スペクトルは、標高-250mで得られた地震観測記録を入力として、標高 +2.3mの応答波を評価する。
- ○なお、同定解析で用いた地震を対象として、応答スペクトル比を評価する。
- ○その結果,減衰定数を3.0%と設定した地下構造モデルを用いて推定した応答波の応答スペクトルは,地震観測記録の応答スペクト ルより大きい傾向を確認した。

応答スペクトル比(水平方向)

応答スペクトル比(鉛直方向)

16

標高+2.3mにおける応答波/標高+2.3mにおける地震観測記録

地下構造モデルの設定

- ○既往の地下構造モデルを基に標高-250mから標高0mまでの減衰定数を3.0%と設定した地下構造モデルを設定する。
- ○層厚, 密度, S波速度・P波速度については、PS検層結果, 弾性波探査結果, 敷地の地震観測記録に基づき設定。
- ○標高0m~標高-250mの減衰定数については、平成30年北海道胆振東部地震の観測記録を含めた同定解析結果から得られた減衰定数を基に3.0%と設定。
- ○標高-250m以深の減衰定数は、地震観測記録が得られていないことから、既往の地下構造モデルより0.5%と設定。
- ○実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈 別記2 第4条第5項第三号②において、 地震基盤相当面は、せん断波速度Vs=2200m/s以上の地層と定義されていることを踏まえて、標高-990m層上面を地震基盤相当 面と設定する。

標高	層厚	密度 $ ho$	S波速度	P波速度	減衰定数
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	(%)
0~-56	56	2.1	1175	2660	3.0
-56~-250	194	2.2	1935	3230	3.0
-250~-430	180	1.9	1350	2700	0.5
-430~-990	560	1.9	1560	3100	0.5
-990~-2000	1010	2.5	2400	4500	0.5
-2000~	_	2.8	3500	6400	0.33

◁解放基盤表面

地下構造モデルの見直し (減衰定数(Q値)の見直し)

◁地震基盤相当面

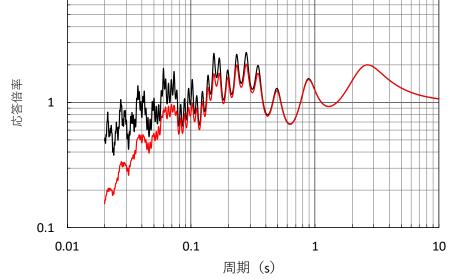
標準応答スペクトルを考慮した地震動評価に用いる地下構造モデル

断層モデルを用いた手法による地震動評価への影響

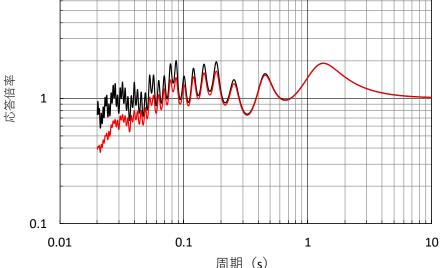
- ○既往の地下構造モデルと本評価において設定した地下構造モデルの地盤増幅特性を比較し、「敷地ごとに震源を特定して策定する 地震動」のうち、断層モデルを用いた手法による地震動評価結果に与える影響を検討する。
- ○地盤増幅特性は、1次元波動論による成層地盤のS波およびP波鉛直入射の地盤応答解析により評価する。なお、入力位置を標高 -990m、出力位置を標高0mとして、2E/2Eの伝達関数の振幅スペクトルを評価する。

標高 (m)	層厚 (m)	密度 $ ho$ (g/cm³)	S波速度 Vs(m/s)	P波速度 Vp(m/s)	減衰定数 (%)	
0~-56	56	2.1	1175	2660	0.5	│
-56~-250	194	2.2	1935	3230	0.5	
-250~-430	180	1.9	1350	2700	0.5	
-430~-990	560	1.9	1560	3100	0.5	
-990~-2000	1010	2.5	2400	4500	0.5	
-2000~	-	2.8	3500	6400	0.33	→ □ 地震基盤

既往の地下構造モデル

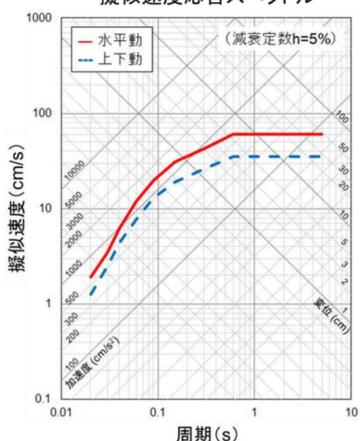

標高 (m)	層厚 (m)	密度 $ ho$ (g/cm³)	S波速度 Vs(m/s)	P波速度 Vp(m/s)	減衰定数 (%)	△ 677+1 1 ± 50 ± ±
0~-56	56	2.1	1175	2660	3.0	◇ 解放基盤表面
-56~-250	194	2.2	1935	3230	3.0	
-250~-430	180	1.9	1350	2700	0.5	
-430~-990	560	1.9	1560	3100	0.5	1 III — + + + + + + + + + + + + + + + + +
-990~-2000	1010	2.5	2400	4500	0.5	→ ◇ 地震基盤相当面
-2000~	-	2.8	3500	6400	0.33	

本評価において設定した地下構造モデル


断層モデルを用いた手法による地震動評価への影響

- ○水平方向、鉛直方向ともに周期0.3秒程度以下において、既往の地下構造モデルによる地盤増幅特性が大きくなっている。
- ○また、周期0.3秒以上においては、両者の地盤増幅特性は、概ね同程度となっている。
- ○以上を踏まえ、断層モデルを用いた手法による地震動評価において、既往の地下構造モデルを用いて実施した地震動評価は、本評 価において設定した地下構造モデルを用いて地震動評価した場合よりも地震動を大きく評価することになることから、断層モデルを 用いた手法による地震動評価については、既往の地震動評価結果(2021年10月22日審査会合)をそのまま採用する。

地盤増幅特性(水平方向)


地盤増幅特性(鉛直方向)

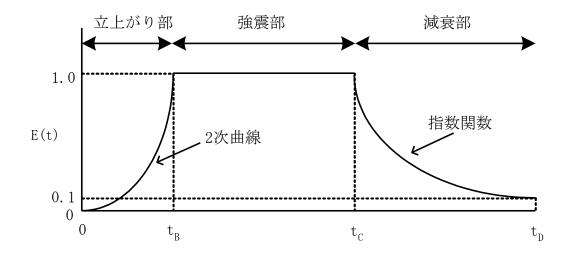
19

断層モデルを用いた手法による地震動評価に用いる地下構造モデル(減衰定数0.5%) 標準応答スペクトルを考慮した地震動評価に用いる地下構造モデル(減衰定数3.0%)

- ○地震基盤相当面における標準応答スペクトルに適合する模擬地震波を作成する。
- ○作成に際しては、複数の手法として下記の手法による検討を行う。
 - ・基準地震動の模擬地震波作成において適用実績のある乱数位相を用いた手法
 - ・震源を特定せず策定する地震動の特徴を反映できるよう,内陸地殻内地震におけるMw6.5程度未満の実観測記録の位相を用いた手法

擬似速度応答スペクトル

コントロールポイント


周期	水平動	上下動
(s)	擬似速度 (cm/s)	擬似速度 (cm/s)
0.02	1.910	1.273
0.03	3.500	2.500
0.04	6.300	4.400
0.06	12.000	7.800
0.09	20.000	13.000
0.15	31.000	19.000
0.30	43.000	26.000
0.60	60.000	35.000
5.00	60.000	35.000

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」より抜粋標準応答スペクトルおよびコントロールポイント

① 乱数位相を用いた模擬地震波の作成

乱数位相を用いた模擬地震波の作成

- ○模擬地震波の作成にあたっては、Noda et al.(2002)による振幅包絡線の経時的変化(Mj6.9, Xeq=10km)を採用し、一様乱数の位相をもつ正弦波の重ね合わせにより作成。
- ○適合条件は、日本電気協会(2015)に記載された判定基準を満足させる。

$$t_{B} = 10^{0.5\text{M}-2.93}$$

$$t_{C} - t_{B} = 10^{0.3\text{M}-1.0}$$

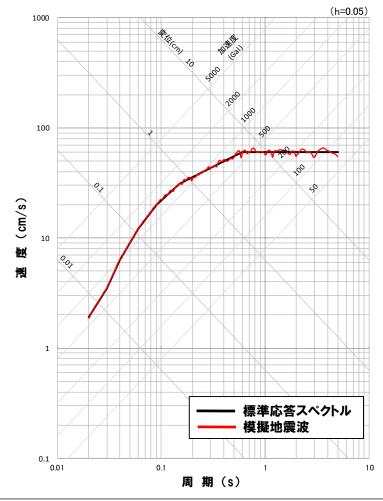
$$t_{D} - t_{C} = 10^{0.17\text{M}+0.54\log(\text{Xe q})-0.6}$$

$$E(t) = \begin{cases} (t/t_{B})^{2} & 0 \le t \le t_{B} \\ 1 & t_{B} \le t \le t_{C} \\ e^{\frac{\ln(0.1)}{t_{D}-t_{C}}(t-t_{C})} & t_{C} \le t \le t_{D} \end{cases}$$

模擬地震波	継続時間	振幅包絲	路線の経時的	変化(s)
快 规心层次	(s)	t _B	t _C	t _D
水平方向	28.0	3.3	15.1	28.0
鉛直方向	28.0	3.3	15.1	28.0

M6.9, Xeq=10km

※地震規模は、全国共通に考慮すべき地震の規模Mw6.5程度未満を参考に設定


※等価震源距離は、震源近傍を想定し設定

;------

① 乱数位相を用いた模擬地震波の作成

乱数位相を用いた模擬地震波の作成結果(水平)

000			同期(S)			
加速度 (Gal) 0 008	www.	YAPANI PANIMANA AYAA PAAN	handaran dikapat kara	• 600Gal	and the suggestion of the sugg	
~ ₋₈₀₀						
0	5	10	15	20	25	30
			時間(s)			

	作成結果
①応答スペクトル比 R(T)	0.89≧0.85
②SI比	1.01≧1.0

(1)
$$R(T) = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

T:周期(s)

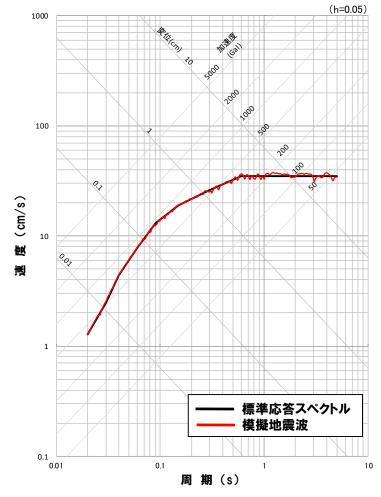
 $S_{V1}(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_{V2}(T)$: 目標とする応答スペクトル(cm/s)

② SI比 =
$$\frac{\int_{0.1}^{2.5} S_V(T) dt}{\int_{0.1}^{2.5} \overline{S}_V(T) dt} \ge 1.0$$

SI:応答スペクトル強さ

 $S_V(T)$: 模擬地震波の応答スペクトル(cm/s)


 $\overline{S}_{V}(T)$: 目標とする応答スペクトル(cm/s)

T:固有周期(s)

○作成した模擬地震波は、日本電気協会(2015)に示される適合度の条件を満足していることを確認した。

乱数位相を用いた模擬地震波の作成

乱数位相を用いた模擬地震波の作成結果(鉛直)

	Φ		400Gal	
0	 ,\disher;e-s-fillef-edgr-gd-6/24ped	الماله بواجه أجهرها أباب معالاته المرابط والمعالم	hay/b////pedhystrassys/sa.com	the of the section of
800				
		15	20	25

	作成結果
①応答スペクトル比 R(T)	0.90≧0.85
②SI比	1.02≧1.0

25

(1)
$$R(T) = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

T:周期(s)

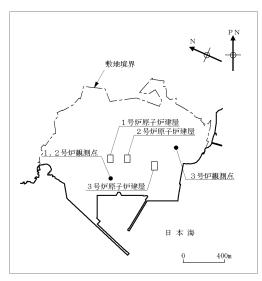
 $S_{V1}(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_{V2}(T)$: 目標とする応答スペクトル(cm/s)

② SI比 =
$$\frac{\int_{0.1}^{2.5} S_V(T) dt}{\int_{0.1}^{2.5} \overline{S}_V(T) dt} \ge 1.0$$

SI:応答スペクトル強さ

 $S_V(T)$: 模擬地震波の応答スペクトル(cm/s)


 $\overline{S}_{\nu}(T)$: 目標とする応答スペクトル(cm/s)

T:固有周期(s)

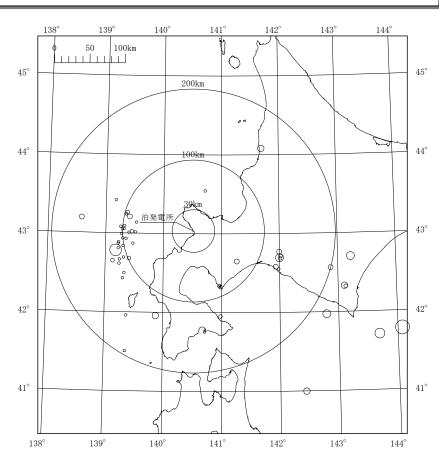
○作成した模擬地震波は、日本電気協会(2015)に示 される適合度の条件を満足していることを確認した。

② 観測位相を用いた模擬地震波の作成

泊発電所における地震観測点および観測記録の震央分布図

配置図

地震計の設置レベル


○模擬地震波の位相として用いる観測記録としては、敷地近傍で発生したMw6.5程度未満の内陸地殻内地震の敷地で得られた観測記録を用いるのが理想的と考えられる。

【泊発電所における地震観測記録】

- ・ 震央距離30km以内の地震観測記録なし(最短約60kmの海域の 地震(Mj4.5))
- ・ Mi6.0以上かつ、 震央距離100km以内の地震観測記録なし

○敷地において、標準応答スペクトルに適用できる地震観測記録は 得られていない。

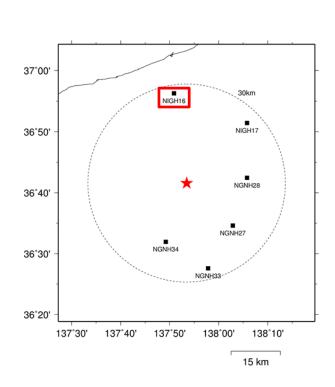
泊発電所における観測記録の 震央分布図

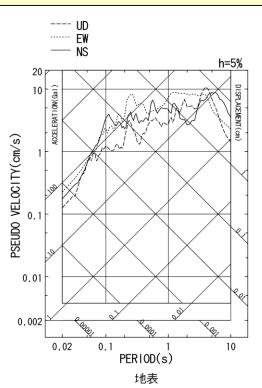
_	凡例
$ \bigcirc$	$8.0 \leq M$
	7. $5 \le M < 8.0$
0	7. $0 \le M < 7.5$
0	6. $5 \le M < 7.0$
0	6. $0 \le M < 6.5$
0	$5.5 \le M < 6.0$
0	$5.0 \le M < 5.5$
٥	M < 5.0

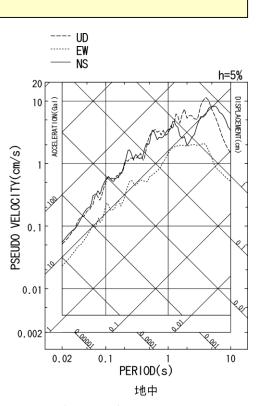
② 観測位相を用いた模擬地震波の作成

観測記録の選定

○模擬地震波の位相として用いる観測記録としては、敷地近傍で発生したMw6.5程度未満の内陸地殻内地震の敷地で得られた観測記録を用いるのが理想的と考えられるものの、敷地において、標準応答スペクトルに適用できる地震観測記録は得られていないことから、他機関の記録を用いた検討を実施する。

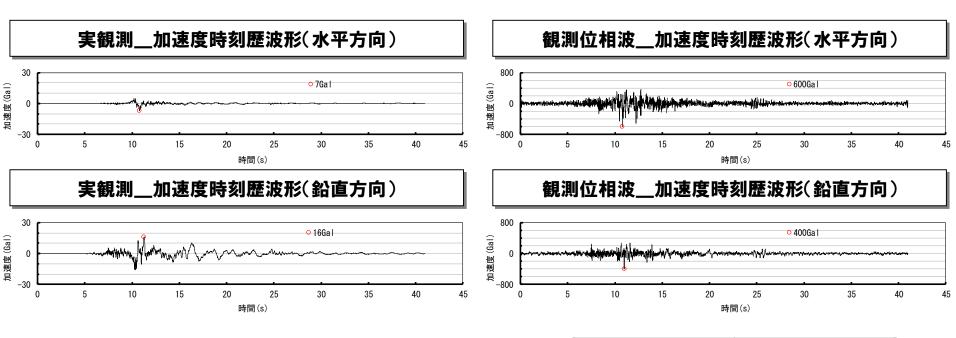

- ○他機関の記録として,原子力規制委員会「震源を特定せず策定する地震動に関する検討チーム(以下,検討チーム)」における標準応答スペクトルの検討に用いられているKiK-net観測点の地震観測記録について,以下の選定基準で観測記録を選定。
 - ・検討チームにて抽出した89地震を対象
 - ・Mw6.0以上の地震のうち、泊発電所の地域性を考慮し、逆断層の地震を選定(5地震)
 - ・上記5地震のうち、震央距離30km以内のKiK-net観測点の地中観測記録(21記録)


発生時刻	震央地名	観測点コード	観測点名	震央距離 (km)	地中 Vs(m/s)	地中 Vp(m/s)
2003/07/26 07:13	宮城県北部	MYGH01	仙台	23.8	3,260	5,630
2000, 01, 20_01120		MYGH06	田尻	22.4	1,480	2,310
		NIGH01	長岡	15.1	-	-
2004/10/23 17:56	新潟県中越地方	NIGH11	川西	17.2	850	2,080
2004/10/23_17.30	机构乐中燃地力	NIGH12	湯之谷	12.7	780	2,250
		NIGH15	六日	28.9	1,540	3,710
		NIGH01	長岡	13.9	-	-
2004/10/23 18:34	並知用中華地 十	NIGH11	川西	22.2	850	2,080
2004/10/23_16:34	新潟県中越地方	NIGH12	湯之谷	10.3	780	2,250
		NIGH15	六日	28.7	1,540	3,710
		NGNH29	野沢温泉	16.3	1,040	2,340
		NIGH11	川西	24.5	850	2,080
2011/03/12_03:59	長野県・新潟県県境付近	NIGH13	牧	19.5	910	1,700
		NIGH14	塩沢	23.2	1,330	3,020
		NIGH19	湯沢	25.6	1,910	4,310
		NGNH27	信州新	19.0	630	2,130
		NGNH28	戸隠	18.4	900	2,130
2014/11/22 22 00	두 #국 를 그리고 학기	NGNH33	生坂	26.7	1,100	2,860
2014/11/22_22:08	長野県北部	NGNH34	大町中	18.9	970	3,100
		NIGH16	糸魚川	27.5	2,250	4,210
		NIGH17	妙高高原	25.9	870	2,950


観測位相を用いた模擬地震波の作成

観測記録の選定

- ○選定した21記録のうち、地震基盤相当面のVs(2200m/s相当)の地中観測記録である2014/11/22長野県北部の地震(Mw6.3) NIGH16糸魚川の観測記録を観測位相を用いた模擬地震波の作成に用いる観測記録として選定。
- ○なお、水平方向については、EW方向を代表波として検討を進める。



2014/11/22 長野県北部の地震(Mw6.3) NIGH16糸魚川

観測位相を用いた模擬地震波の作成


- ○観測位相を用いる際の経時特性は、実観測波の経時特性が反映されるため、 乱数位相のような包絡関数は設定しない。
- ○適合条件は、日本電気協会(2015)に記載された判定基準を満足させる。

模擬地震波	最大加速度(Gal)
水平方向	600
鉛直方向	400

観測位相を用いた模擬地震波の作成

観測位相を用いた模擬地震波の作成結果(水平方向)

		والمفراة المتالية والمتعاربة	Library and		billitti. 1.	○ 600Ga l		
0	William Control of the Control of th			ikiantusi (filikian-ikitan	Marian de cala III e de cala antes e de	Hårendleförfresvirtetorskrippe	Maria de la company de la comp	
_800 🗀								

	作成結果
①応答スペクトル比 R(T)	0.90≧0.85
②SI比	1.01≧1.0

30

(1)
$$R(T) = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

T:周期(s)

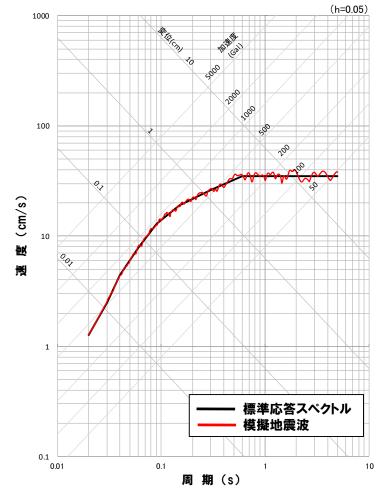
 $S_{V1}(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_{V2}(T)$: 目標とする応答スペクトル(cm/s)

② SI比 =
$$\frac{\int_{0.1}^{2.5} S_V(T) dt}{\int_{0.1}^{2.5} \overline{S}_V(T) dt} \ge 1.0$$

SI:応答スペクトル強さ

 $S_V(T)$: 模擬地震波の応答スペクトル(cm/s)


 $\overline{S}_{\nu}(T)$: 目標とする応答スペクトル(cm/s)

T:固有周期(s)

○作成した模擬地震波は、日本電気協会(2015)に示 される適合度の条件を満足していることを確認した。

観測位相を用いた模擬地震波の作成

観測位相を用いた模擬地震波の作成結果(鉛直方向)

00						0.4000-1		
-						400Ga l		
-		مهرا المارين مريدية	1.# .					
0	-		والمراب والمساولة المناسبة	Salar San Janes A . Salar	annews / John / John / ser	AND VICE TO PROPERTY OF THE PR	-	******
0		and the second	mally brought to serve	Military April 1980 Carrier Marie Carrier Ma	university of frances	, , , , , , , , , , , , , , , , , , ,	-traffic of resembly and resembly a	Hayesteens
0		Andrew All Mark	un'iliahembah shusebes	Hither Harvey Andrew	marrow of John Journa	, A. S. L.	and the second s	Mangarishana
0		- 	- مرابع الماركين المارك	Merican plants, Androst Aplant	- -	**************************************		Manyorana
0		10	15	20	25	30	35	40

	作成結果
①応答スペクトル比 R(T)	0.86≧0.85
②SI比	1.01≧1.0

31

(1)
$$R(T) = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

T:周期(s)

 $S_{V1}(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_{V2}(T)$: 目標とする応答スペクトル(cm/s)

② SI比 =
$$\frac{\int_{0.1}^{2.5} S_V(T) dt}{\int_{0.1}^{2.5} \overline{S}_V(T) dt} \ge 1.0$$

SI:応答スペクトル強さ

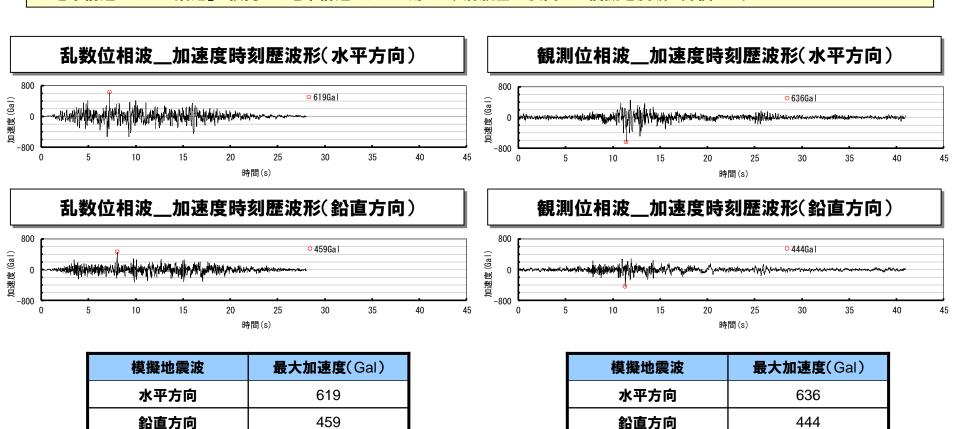
 $S_V(T)$: 模擬地震波の応答スペクトル(cm/s)

 $\overline{S}_{\nu}(T)$: 目標とする応答スペクトル(cm/s)

T:固有周期(s)

○作成した模擬地震波は、日本電気協会(2015)に示 される適合度の条件を満足していることを確認した。

③ 解放基盤表面における地震動の設定

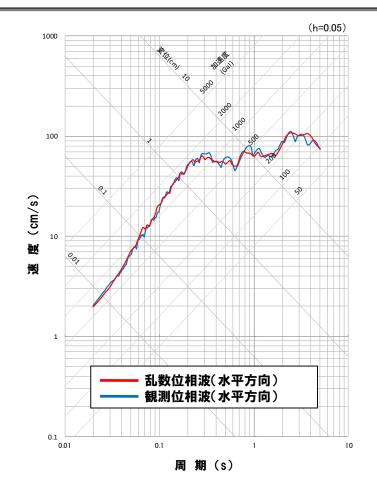

○地震基盤相当面における模擬地震波を用いて、1次元波動論により、標準応答スペクトルを考慮した地震動評価に用いる地下構造 モデルの地震基盤相当面から解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における標準応答スペクトルを考慮 した地震動を設定。

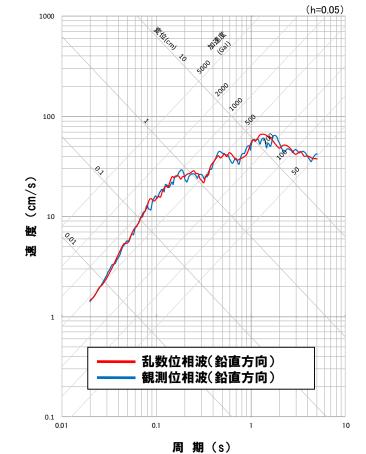
標高 (m)	層厚 (m)	密度 ρ (g/cm³)	S波速度 Vs (m/s)	P波速度 Vp (m/s)	減衰定数 (%)	▽解放基盤表面
0~-56	56	2.1	1175	2660	3.0	1
-56~-250	194	2.2	1935	3230	3.0	1次元波動論による 地震波の伝播特性の反映
-250~-430	180	1.9	1350	2700	0.5	心長収の仏歯付任の収め
-430~-990	560	1.9	1560	3100	0.5	▽地震基盤相当面
-990~-2000	1010	2.5	2400	4500	0.5	
-2000~	1	2.8	3500	6400	0.33	

標準応答スペクトルを考慮した地震動評価に用いる地下構造モデル

解放基盤表面における地震動の設定

○「3. ①乱数位相を用いた模擬地震波の作成」および「3. ②観測位相を用いた模擬地震波の作成」で検討した2波について、「2. 地下構造モデルの設定」で検討した地下構造モデルを用いて、解放基盤表面での模擬地震波を評価する。

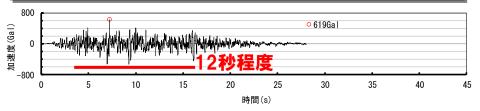

解放基盤表面における地震動の設定


応答スペクトルの比較

○乱数位相を用いて作成した模擬地震波と観測位相を用いて作成した模擬地震波の解放基盤表面での応答スペクトルを比較した結 果、乱数位相を用いて作成した模擬地震波と観測位相を用いて作成した模擬地震波は、概ね同程度である。

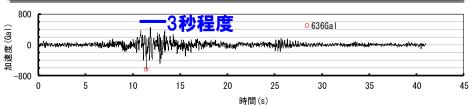
応答スペクトル(水平方向)

応答スペクトル(鉛直方向)

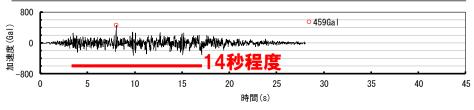


③ 解放基盤表面における地震動の設定

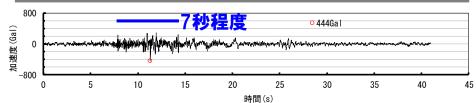
時刻歴波形の比較


- ○時刻歴波形を比較すると, 乱数位相の模擬地震波の方が比較的振幅の大きい波(最大加速度値の0.5倍以上の振幅)の継続時間が長い。
- ・水平方向: 乱数位相波が12秒程度, 観測位相波が3秒程度
- ・鉛直方向: 乱数位相波が14秒程度, 観測位相波が7秒程度

乱数位相波__加速度時刻歷波形(水平方向)



観測位相波__加速度時刻歷波形(水平方向)


35

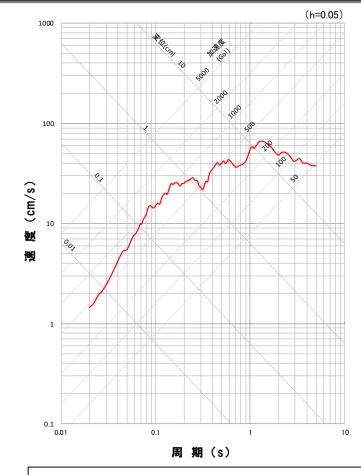
乱数位相波__加速度時刻歷波形(鉛直方向)

観測位相波__加速度時刻歷波形(鉛直方向)

解放基盤表面における地震動の設定

- ○模擬地震波の解放基盤表面での応答スペクトルが概ね同程度であること、かつ、乱数位相の模擬地震波の方が比較的振幅の大き い波の継続時間が長いことを踏まえ、標準応答スペクトルに基づく地震動評価としては、乱数位相を用いて作成した模擬地震波を代 表とする。
- ○設定した解放基盤表面における標準応答スペクトルを考慮した地震動を下記に示す。

応答スペクトル(水平方向)


(h=0.05)100 度 (cm/s) 圏 0.1

標準応答スペクトルを考慮した地震動(水平方向)

周期(s)

応答スペクトル(鉛直方向)

36

標準応答スペクトルを考慮した地震動(鉛直方向)

- ・ 物理探査ハンドブック(1999):公益社団法人物理探査学会
- ・ 太田外気晴・丹羽正徳・高橋克也・八幡夏恵子(1985):物理探査と室内試験から評価されるVp, Vs及びポアソン比の関係, 日本 地震学会講演予稿集, 1985年春季大会, B12, 108

- ・ 独立行政法人 防災科学技術研究所(2005):石狩低地東縁断層帯の地震を想定した地震動予測地図作成手法の検討, 防災科学技術研究所研究資料 第283号
- S.Noda, K.Yashiro, K.Takahashi, M.Takemura, S.Ohno, M.Tohdo and T.Watanabe(2002):RESPONSE SPECTRA FOR
 DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD Workshop on the Relations Between Seismological DATA
 and Seismic Engineering, Oct. 16–18, Istanbul, 399–408
- ・ 原子力発電所耐震設計技術指針 JEAG4601-2015:一般社団法人日本電気協会