無断複製·転載等禁止

資料2-1

泊発電所3号炉標準応答スペクトルを考慮した地震動評価について

令和4年8月5日 北海道電力株式会社

指摘事項に対する回答方針

No.	指摘事項	指摘 時期	回答方針	ページ
1	北海道の西部の範囲まで拡大して収集 した地震記録については、敷地において 標準応答スペクトルを考慮する地震動の 検討に用いる記録として適切なものがあ るのか、分析、考察を行うこと。	令和4年 5月13日 第1047回 審査会合	北海道の西部の範囲まで拡大して収集した地震記録も含めた地震記録について、収集・選定条件を示したうえで、その収集・選定過程を明示する。 検討に用いる記録として採用するにあたり、これまでの検討に加え、観測記録の地震波の継続時間に係る特徴の分析、敷地と各KiK-net観測点との地盤条件の比較(観測点以浅の速度構造や構成地質の比較)等を踏まえた採用の有無の判断結果を説明する。	18~68 91~103
2	観測記録に特異な位相が無いことについては、フーリエ位相スペクトルやフーリエ振幅スペクトル等も示し説明すること。	令和4年 5月13日 第1047回 審査会合	収集した観測記録から検討に用いる記録の有無を判断するための検討として、これまでの検討に加え、収集したKiK-net観測点の観測記録のフーリエ位相スペクトル、フーリエ振幅スペクトル等を評価し、観測記録に特異な位相が無いことについて確認した結果を説明する。	69~90
3	大深度地震観測記録の観測状況も含めて整理すること。	令和4年 5月13日 第1047回 審査会合	観測記録の収集にあたり、敷地の標高-1170m、標高-500m等で実施している大深度地震観測の設置概要およびこれまで得られている大深度地震観測記録を示したうえで、観測記録の収集過程を明確にする。	18, 21
4	上記検討を行い、観測記録の位相を用いた模擬地震波の検討にあたって、考慮すべき観測記録の有無の判断に係る説明を明確化した上で、検討に用いる観測記録として、2014年7月8日胆振地方の地震(M5.6)SBSH08喜茂別の記録を選定することが適切なのか説明すること。	令和4年 5月13日 第1047回 審査会合	No.1~No.3の検討結果を踏まえ、標準応答スペクトルを考慮した地震動の検討に用いる記録の有無の判断結果を説明する。	104
5	標準応答スペクトルに基づく模擬地震波 を作成する際に、考慮する必要のある観 測記録の有無についての具体的な判断 指標等が整理できていない。	令和4年 5月27日 第1051回 審査会合	標準応答スペクトルに基づく模擬地震波を作成する際に、考慮する 必要のある観測記録の有無の判断に用いた検討項目を整理する。	104

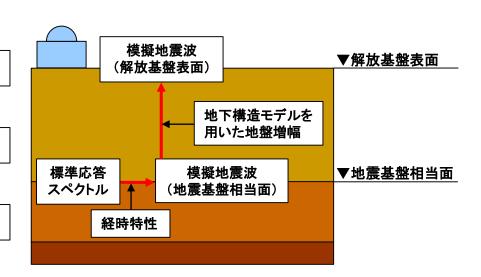
1. 標準応答スペクトルを考慮した地震動について・・・・・・	4
2. 地下構造モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 模擬地震波の作成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3.1 乱数位相を用いた模擬地震波の作成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
3.2 観測位相を用いた模擬地震波の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3.3 解放基盤表面における地震動の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
3. 4 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110

1. 標準応答スペクトルを考慮した地震動について

1. 標準応答スペクトルを考慮した地震動について

再揭(R4.1.14審査会合資料)

標準応答スペクトルを考慮した地震動


- ○2021年4月21日に改正された実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈等を踏まえ、 泊発電所における標準応答スペクトルを考慮した地震動評価を実施する。
- ○標準応答スペクトルを考慮した地震動評価は、以下の通り、①地下構造モデルの設定、②地震基盤相当面における模擬地震波の作成、③解放基盤表面における地震動の設定、の流れで検討を実施する。
- ① 地下構造モデルの設定

② 地震基盤相当面における模擬地震波の作成

③ 解放基盤表面における地震動の設定

標準応答スペクトルを考慮した地震動の 評価の流れ

標準応答スペクトルを考慮した地震動の 評価のイメージ

2. 地下構造モデルの設定

2. 地下構造モデルの設定

再揭(R4.5.13審査会合資料)

敷地ごとに震源を特定して策定する地震動評価に用いた地下構造モデルの設定方法

- ○実用発電用原子炉及びその附属施設の位置, 構造及び設備の基準に関する規則の解釈では, 解放基盤表面までの地震波の伝播特性を応答スペクトルの設定に反映することが求められている。
- 〇地震基盤から解放基盤表面までの地下構造モデルとしては、敷地ごとに震源を特定して策定する地震動の断層モデルを用いた手法による地震動評価において用いている地下構造モデル(2021年10月22日審査会合、以下、既往の地下構造モデルという。)があり、以下の通り設定されている。(参考資料1.参照)
 - ・敷地内・敷地周辺の調査結果・地震観測記録を活用して設定
 - ・調査結果等がない場合、他機関の地下構造モデル等に基づき設定

①標高 Om~ -250m : 地震観測点におけるボーリング調査・地震観測記録による同定解析

②標高 -250m~ -990m : 1号機原子炉建屋位置におけるボーリング調査

③標高 -990m~-2000m : 弾性波探査·文献

4.標高-2000m~: 他機関の地下構造モデル

標高 (m)	層厚 (m)								密度 ρ (g/cm³)	S波速度 Vs (m/s)	P波速度 Vp (m/s)	Q値
0~ -56	56	地震観測点	地震観測点	地震観測記録に	地震観測記録による 同定解析結果を基に 安全側に設定							
-56~ -250	194	PS 検層結果	ボーリングデータ	(初期値は P								
-250~ -430	180	1号牌准子加建屋 1号牌准子加建屋		を 1号機原子炉建屋 1号機原子炉建屋 PS 検層結果								
-430~ -990	0~ 560 PS 検層結果		ボーリングデータ	与俄原丁炉连	標高-250m 以浅							
-990~ -2000	1010	弾性波 探査結果			弾性波 探査結果	の設定値を用いる						
-2000 ~	_	_	防災科学技術研究所(2005)									

再揭(R4.5.13審査会合資料)

地下構造モデルの検討方針

○既往の地下構造モデルにおける減衰定数は,大きな裕度を持って設定されていると考えられる(参考資料2.参照)ものの,現状の観測記録等の限られたデータでは,地下構造モデルを見直すことの妥当性を示すことが難しいことから,安全側の評価となる既往の地下構造モデルを用いて標準応答スペクトルを考慮した地震動評価を実施する。

標高	層厚	密度 ρ	S波速度	P波速度	Q値
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	り担
0~-56	56	2.1	1175	2660	100
-56~-250	194	2.2	1935	3230	100
-250~-430	180	1.9	1350	2700	100
-430~-990	560	1.9	1560	3100	100
-990~-2000	1010	2.5	2400	4500	100
-2000~	_	2.8	3500	6400	150

✓ 解放基盤表面

< 地震基盤

既往の地下構造モデル

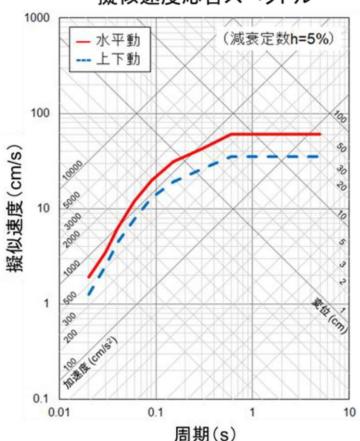
2. 地下構造モデルの設定

再揭(R4.5.13審査会合資料)

地下構造モデルの設定

- ○既往の地下構造モデルは、地震基盤を標高-2000m、解放基盤表面を標高0mとしている。
- ○標準応答スペクトルを考慮した地震動評価を実施するにあたって、既往の地下構造モデルに対して、地震基盤相当面を設定する。
- ○実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈 別記2 第4条第5項第三号②において、地震基盤相当面は、せん断波速度Vs=2200m/s以上の地層と定義されていることを踏まえて、標高-990m層上面を地震基盤相当面と設定する。

標高	層厚	密度 ρ	S波速度	P波速度	Q値	
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	単り	<│ 解放基盤表面
0~-56	56	2.1	1175	2660	100	
-56~-250	194	2.2	1935	3230	100	
-250~-430	180	1.9	1350	2700	100	
-430~-990	560	1.9	1560	3100	100	✓ 地震基盤相当面
-990~-2000	1010	2.5	2400	4500	100	▽ 心辰卒盗竹ヨ頃
-2000~	_	2.8	3500	6400	150	


標準応答スペクトルを考慮した地震動評価に用いる地下構造モデル

3. 模擬地震波の作成

再揭(R4.1.14審査会合資料)

- ○地震基盤相当面における標準応答スペクトルに適合する模擬地震波を作成する。
- ○作成に際しては、複数の手法として下記の手法による検討を行う。
 - ・基準地震動の模擬地震波作成において適用実績のある乱数位相を用いた手法
 - ・震源を特定せず策定する地震動の特徴を反映できるよう,内陸地殻内地震におけるMw6.5程度未満の実観測記録の位相を用いた手法

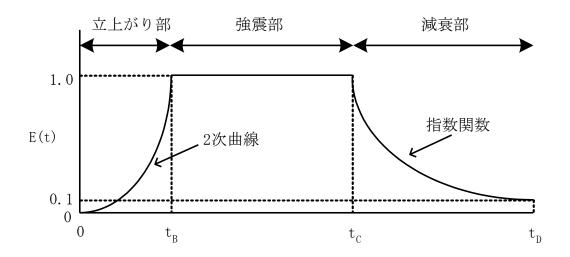
擬似速度応答スペクトル

コントロールポイント

周期	水平動	上下動			
(s)	擬似速度 (cm/s)	擬似速度 (cm/s)			
0.02	1.910	1.273			
0.03	3.500	2.500			
0.04	6.300	4.400			
0.06	12.000	7.800			
0.09	20.000	13.000			
0.15	31.000	19.000			
0.30	43.000	26.000			
0.60	60.000	35.000			
5.00	60.000	35.000			

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」より抜粋 標準応答スペクトルおよびコントロールポイント

3. 模擬地震波の作成


乱数位相を用いた模擬地震波の作成

再揭(R4.5.13審査会合資料)

12

乱数位相を用いた模擬地震波の作成

- ○模擬地震波の作成にあたっては、Noda et al.(2002)による振幅包絡線の経時的変化(M7.0, Xeg=10km)を採用し、一様乱数の 位相をもつ正弦波の重ね合わせにより作成。
- ○適合条件は、日本電気協会(2015)に記載された判定基準を満足させる。

$$t_{B} = 10^{0.5\text{M}-2.93}$$

$$t_{C} - t_{B} = 10^{0.3\text{M}-1.0}$$

$$t_{D} - t_{C} = 10^{0.17\text{M}+0.54\log(\text{Xe q})-0.6}$$

$$E(t) = \begin{cases} (t/t_{B})^{2} & 0 \le t \le t_{B} \\ 1 & t_{B} \le t \le t_{C} \\ e^{\frac{\ln(0.1)}{t_{D}-t_{C}}(t-t_{C})} & t_{C} \le t \le t_{D} \end{cases}$$

模擬地震波	継続時間	振幅包絡線の経時的変化(s)					
凭雅地辰权	(s)	t _B	t _C	t _D			
水平方向	29.8	3.7	16.3	29.8			
鉛直方向	29.8	3.7	16.3	29.8			

M7.0, Xeq=10km

※地震規模は、全国共通に考慮すべき地震の規模(Mw6.5程度未満)を踏まえ、主要動の継続時間を適切に設定する観点からM7.0とする。

[※]等価震源距離は、震源近傍を想定しXeg=10kmと設定する。

800

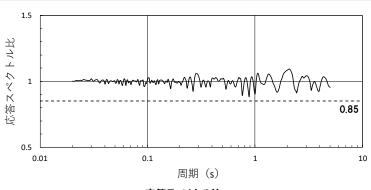
-800

5

10

加速度(Gal)


3. 模擬地震波の作成


乱数位相を用いた模擬地震波の作成

再揭(R4.5.13審査会合資料)

13

乱数位相を用いた模擬地震波の作成結果(水平)

応答スペクトル比

	作成結果
①応答スペクトル比 R(T)	0.88≧0.85
②SI比	1.00≧1.0

①
$$R(T) = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

T:周期(s)

30

SI:応答スペクトル強さ

 $S_{V1}(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_V(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_{V2}(T)$: 目標とする応答スペクトル(cm/s)

 $\overline{S}_{V}(T)$: 目標とする応答スペクトル(cm/s)

T:固有周期(s)

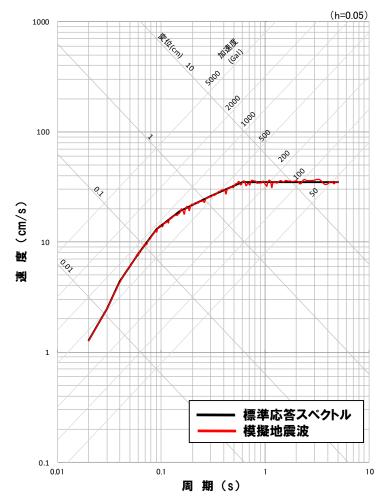
25

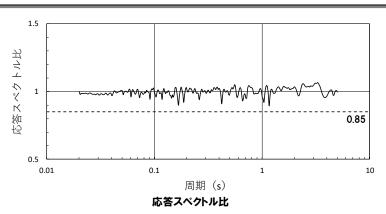
20

15

時間(s)

○作成した模擬地震波は、日本電気協会(2015)に示 される適合度の条件を満足していることを確認した。


3. 模擬地震波の作成


乱数位相を用いた模擬地震波の作成

再揭(R4.5.13審査会合資料

14

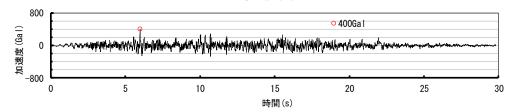
乱数位相を用いた模擬地震波の作成結果(鉛直)

	作成結果
①応答スペクトル比 R(T)	0.89≧0.85
②SI比	1.01≧1.0

①
$$R(T) = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

T:周期(s)

SI:応答スペクトル強さ


 $S_{V1}(T)$: 模擬地震波の応答スペクトル(cm/s)

 $S_V(T)$: 模擬地震波の応答スペクトル(cm/s)

 $\overline{S}_{V}(T)$: 目標とする応答スペクトル(cm/s)

 $S_{V2}(T)$: 目標とする応答スペクトル(cm/s)

T:固有周期(s)

○作成した模擬地震波は、日本電気協会(2015)に示 される適合度の条件を満足していることを確認した。

;------

3. 模擬地震波の作成

3.2 観測位相を用いた模擬地震波の検討

一部加筆修正(R4.5.27審査会合資料)

観測記録の位相を用いた模擬地震波の検討に関する基本方針

- ○観測記録の位相を用いた模擬地震波の検討にあたり、泊発電所における敷地地盤の振動特性に起因する特徴を 適切に反映させることが必要と考え、検討に用いる観測記録としては、敷地近傍で発生した内陸地殻内地震の敷 地で得られた観測記録を用いることが適切である。
- ○しかしながら、敷地において、近傍で発生した内陸地殻内地震の観測記録が得られていないことを踏まえ、より幅広く観測記録を収集するとの観点から、地盤条件の類似性の確認を後段で行うこととして敷地周辺の観測点における観測記録に収集対象を拡大する。
- ○対象を拡大して収集した観測記録について、その観測記録の特異な位相特徴の有無を確認し、震源近傍の観測記録および地盤条件が敷地地盤と同様と見做せる観測点と判断できる場合には、その観測記録を用いた模擬地震波の検討を行う。

17

3.2 観測位相を用いた模擬地震波の検討

一部加筆修正(R4.5.27審査会合資料)

○観測位相を用いた模擬地震波の検討フローを以下に示す。

【① 観測記録の収集】

- ○観測記録の位相を用いた模擬地震波の検討にあたり、泊発電所における敷地地盤の振動特性に起因する特徴を適切に反映させる ことが必要と考え. 敷地において観測された記録から敷地近傍で発生した内陸地殻内地震を収集した結果. 収集条件に適合する観 測記録が無かった。
- 〇より幅広く観測記録を収集するとの観点から収集条件(地震規模および収集対象範囲)を拡大し、敷地周辺および北海道西部にお ける他機関の観測記録を対象として記録を収集した結果、4地震8記録の観測記録を収集した。

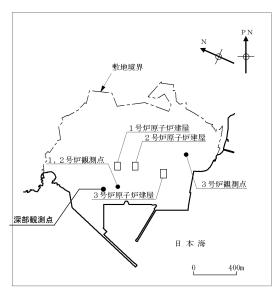
【② 模擬地震波の検討にあたって考慮すべき観測記録の選定】

- ○収集した観測記録について、以下の観点で模擬地震波の検討にあたって考慮すべき観測記録に選定するか総合的に判断
 - 特異な位相特徴の有無
 - ◆ 特異な位相特徴の有無を確認するため、加速度時刻歴波形の形状等(パルス波や振幅の大きい後続波の有無)の確 認. フーリエ位相スペクトル. フーリエ振幅スペクトル等の特徴的な形状等の確認を実施
 - 観測記録の信頼性
 - ◆ 観測された記録が模擬地震波の検討にあたって適用することが適切な記録か否か確認するため. 地震規模および観測 レベル(最大加速度、SN比)の確認、観測記録の継続時間に係る特徴に関する考察を実施
 - 地盤条件の類似性
 - ◆ 地盤条件が敷地地盤と同様と見做せる観測点の記録か否か確認するため、 観測点位置の速度構造、 観測点以浅の速 度構造. 構成地質等の確認を実施

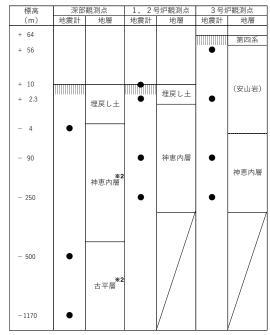
【③ 観測記録の位相を用いた模擬地震波の検討】

○②の選定結果を踏まえて、考慮すべき観測記録が選定された場合、模擬地震波の検討を実施する。

- 観測位相を用いた模擬地震波の検討
 - 観測記録の収集

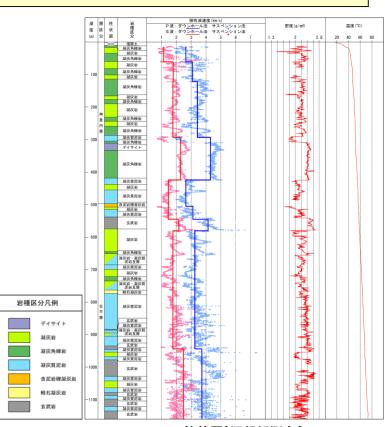

泊発電所における地震観測点

- 【1.2号炉および3号炉観測点】
- ○1.2号炉観測点および3号炉観測点は、配置図に示した位置において観測を実施している。
- ○1, 2号炉観測点は, 1988年から観測を開始している。
- ○3号炉観測点は、1997年から観測を開始している。


【深部観測点】

- ○深部観測点は、1号炉原子炉建屋側の海側において、標高-1170m、標高-500m、地表付近の3点で観測を実施している。※1
- ○深部観測点は、2021年3月から観測を開始しており、これまで5地震の観測記録が得られている。

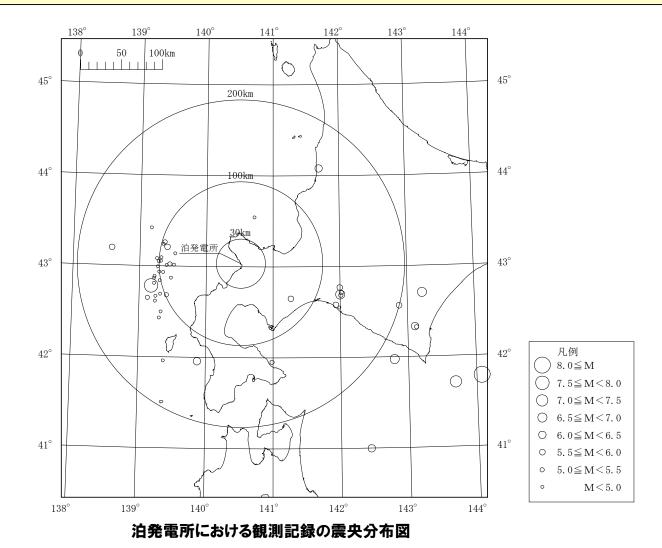
※1:深部観測点は、今後設置する新設防潮堤に干渉するため移設予定



配置図

地震計の設置レベル

※2: 敷地の基盤をなす新第三系上部中新統神恵内層の下位に、下部〜上部中新統古平層を確認している。 神恵内層および古平層の性状については、参考資料3.参照。


18

柱状図[深部観測点]

① 観測記録の収集

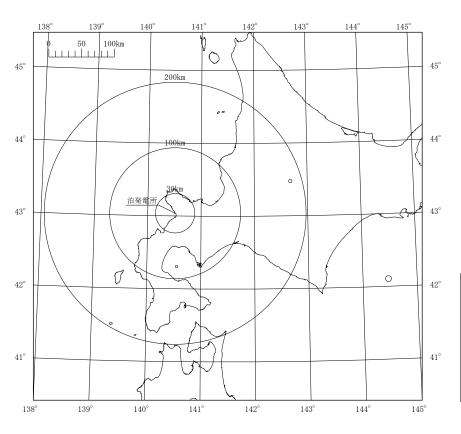
泊発電所(1,2号炉および3号炉観測点)における観測記録

○泊発電所(1,2号炉および3号炉観測点)において,64記録が収集されており,敷地近傍で発生した内陸地殻内地震の観測記録として,震央距離30km以内および震源深さ30km以内の観測記録は,得られていない。

20

① 観測記録の収集

泊発電所(1,2号炉および3号炉観測点)における観測記録の一覧


No.	地名または地震名	年月日	震央	震央位置				М	震央距離 (km)	最大加速 1,2号炉 (標高+	観測点	最大加速 3号炉 (標高-	
			北緯	東経				NS	EW	NS	EW		
1	1993年釧路沖地震	1993/01/15 20:06:07	42.920	144.353	101	7.5	313	11	5	-	-		
2	1993年北海道南西沖地震	1993/07/12 22:17:11	42.782	139.180	35	7.8	113	49	54	-	-		
	積丹半島北西沖	1993/07/12 23:01:49	43.135	139.533	37	4.7	81	1	2	-	-		
4	積丹半島北西沖	1993/07/12 23:04:24	43.022	139.457	35	5.4	86	5	11	-	-		
5 6	北海道南西沖 北海道南西沖	1993/07/13 03:10:55 1993/07/13 03:17:20	42.665 42.930	139.245 139.360	22 32	4.7 4.8	112 95	1	1	_			
	北海道南西沖	1993/07/13 03:17:20	42.887	139.232	20	4.8	106	2	2		-		
8	北海道南西沖	1993/07/13 04:50:06	42.838	139.310	0	4.3	101	1	1	_	_		
9	積丹半島北西沖	1993/07/13 05:54:40	43.093	139.327	6	4.5	97	1	1	-	-		
	北海道南西沖	1993/07/13 06:46:52	42.692	139.320	26	4.4	105	1	1	-	-		
11	積丹半島北西沖	1993/07/13 07:34:15	43.012	139.517	28	4.1	81	1	2	-	-		
12	北海道南西沖	1993/07/13 10:16:49	42.872	139.475	1	4.4	87	1	1	1	-		
13	北海道南西沖	1993/07/13 14:32:52	42.613	139.240	24	4.2	114	1	1	-	-		
14	北海道南西沖	1993/07/13 16:48:53	41.958	139.375	30	3.8	152	0.2	0.2	-	-		
15	北海道南西沖	1993/07/13 21:36:25	42.683	139.412	0	5.2	98	3	5	-	-		
16	北海道南西沖	1993/07/14 00:25:18	42.865	139.223	29	4.7	107	1	2	_	-		
17	北海道南西沖	1993/07/14 17:18:27 1993/07/14 17:21:41	42.933 43.048	139.300 139.287	32 22	4.4 3.9	100 100	1	1	-	-		
19	積丹半島北西沖 積丹半島北西沖	1993/07/14 17:21:41	43.048	139.287	31	3.9	97	1	1		- -		
20	北海道南西沖	1993/07/15 02:34:17	42.430	139.323	29	4.7	119	1	1		_		
	表现	1993/07/15 11:47:29	43.082	139.263	32	4.7	102	2	4	-			
22	積丹半島北西沖	1993/07/15 12:12:42	43.262	139.380	31	5.0	95	1	1	-	-		
	積丹半島北西沖	1993/07/16 04:36:10	43.238	139.355	36	4.3	97	1	1	-	-		
24	北海道南西沖	1993/07/16 04:37:36	42.647	139.128	16	5.3	121	1	1	-	-		
	積丹半島北西沖	1993/07/16 21:55:02	43.008	139.405	38	3.8	90	2	4	-	-		
	北海道南西沖	1993/07/24 02:22:40	42.990	139.278	27	3.6	101	1	1	-	-		
27	北海道南西沖	1993/07/25 03:46:54	42.498	139.330	35	4.6	114	1	1	-	-		
28	1993年北海道南西沖地震最大余震	1993/08/08 04:42:43	41.958	139.882	24 28	6.3 8.2	131	7	5		- -		
30	1994年北海道東方沖地震 1999年積丹半島北西沖	1994/10/04 22:22:56 1999/03/15 18:44:54	43.375 43.416	147.673 139.177	28	4.5	583 116	2	5 1	0.5	0.2		
31	根室半島沖	2000/01/28 23:21:08	43.008	146.744	59	7.0	508	2	1	1	1		
32	青森県東方沖	2001/08/14 05:11:24	40.996	142.437	38	6.4	277	1	1	- '	- '		
33	宮城県沖	2003/05/26 18:24:33	38.821	141.651	72	7.1	478	1	1	-	-		
34	2003年十勝沖地震	2003/09/26 04:50:07	41.779	144.079	45	8.0	325	7	8	9	8		
35	十勝沖	2003/09/26 06:08:01	41.710	143.692	21	7.1	300	3	3	3	3		
36	十勝支庁南部	2004/06/11 03:12:10	42.322	143.131	48	5.2	229	1	1	-	-		
37	<u>釧路沖</u>	2004/11/29 03:32:14	42.946	145.276	48	7.1	388	-	-	4	6		
38	根室半島南東沖	2004/12/06 23:15:11	42.848	145.343	46 9	6.9	395	- 1	- 0	6 1	1		
	留萌支庁南部 釧路沖	2004/12/14 14:56:10 2005/01/18 23:09:06	44.077 42.876	141.700 145.007	50	6.1	150 367	1	<u>2</u>	1	1		
41	宮城県沖	2005/08/16 11:46:25	38.150	142.278	42	7.2	563	1	1		_ '		
42	北海道西方沖	2005/12/13 06:01:37	43.209	139.414	29	5.5	91	- '	- '	1	2		
43	北海道南西沖	2010/03/30 10:02:51	43.192	138.578	25	5.8	158	2	3	1	1		
44	東北地方太平洋沖地震	2011/03/11 14:46:18	38.104	142.861	24	9.0	583	3	2	2	2		
45	岩手県沖	2011/03/11 15:06:10	39.045	142.398	29	6.5	471	1	1	1	1		
46	岩手県沖地震	2011/06/23 06:50:50	39.948	142.591	36	6.9	384	1	1	1	1		
47	宮城県沖	2011/04/07 23:32:43	38.204	141.920	66 34	7.2	550	- 0.4	- 0.3	1	1		
48	三陸沖 十勝地方南部	2011/07/10 09:57:07 2012/08/25 23:16:17	38.032 42.328	143.507 143.111	49	7.3 6.1	611 227	U.4 1	0.3	- 1	- 1		
50	<u>干勝地万曽部</u> 三陸沖	2012/08/25 23:16:17	38.020	143.111	49	7.3	625	_ '	_ '	1	1		
51	十勝地方南部	2013/02/02 23:17:36	42.702	143.227	102	6.5	225	1	1	1	1		
52	胆振地方中東部	2014/07/08 18:05:24	42.648	141.267	3	5.6	75	2	2	1	2		
53	浦河沖	2016/01/14 12:25:33	41.970	142.800	52	6.7	222	1	2	2	1		
54	内浦湾	2016/06/16 14:21:28	41.948	140.987	11	5.3	127	-	-	0.5	0.4		
	北海道西方沖	2016/12/08 19:58:55	43.543	140.720	11	4.5	59	-	-	0.5	0.3		
56	平成30年北海道胆振東部地震	2018/09/06 03:07:59	42.690	142.007	37	6.7	128	7	7	5	8		
57 58	胆振地方中東部 胆振地方中東部	2018/09/06 03:20:11 2018/09/06 06:11:30	42.578 42.682	141.942	31 36	5.5 5.4	127 129			0.4	0.4		
59	日高地方西部	2018/09/06 06:11:30	42.548	141.988	36	4.9	132	-	-	0.4	0.4		
60	北海道南西沖	2018/11/12 10:44:52	42.810	139.223	33	4.4	108	1	2	0.4	0.4		
61	胆振地方中東部	2019/02/21 21:22:40	42.765	142.003	33	5.8	125	1	2	1	2		
62	十勝地方南部	2019/04/28 02:24:47	42.560	142.878	102	5.6	201	1	1	1	1		
	胆振地方中東部	2021/01/27 14:06:52	42.710	142.020	128	5.4	128	-	-	0.2	0.2		
64	福島県沖	2021/02/13 23:07:51	37.728	141.698	55	7.3	598	-	-	1	1		

1923年~2012年 気象庁地震カタログ 2013年以降 気象庁ホームページ

観測記録の収集

泊発電所(深部観測点)における観測記録

○泊発電所(深部観測点)において、5記録が収集されており、震央距離30km以内および震源深さ30km以内の観測記録は、得られて いない。

No.	地名または地震名	年月日	年 月 日		震源深さ (km)	М	震央距離 (km)	最大加速度(Gal) 深部観測点 (標高-1170m)	
			北緯	東経				NS	EW
1	内浦湾	2021/04/16 05:47:52	42.305	140.557	18	4.4	81	0.4	0.5
2	宮城県沖	2021/05/01 10:27:27	38.173	141.740	51	6.8	550	0.1	0.1
3	福島県沖	2021/05/14 08:58:14	37.698	141.762	46	6.3	602	0.1	0.1
4	十勝沖	2021/05/16 12:23:54	42.100	144.473	8	6.1	341	0.1	0.1
5	上川地方中部	2021/06/20 20:08:24	43.477	142.683	158	5.4	183	0.1	0.1

21

() 8.0≦M \bigcirc 7. 5 \leq M \leq 8. 0 $7.0 \le M < 7.5$ \bigcirc 6.5 \leq M < 7.0 $0.0 \le M \le 6.5$ O 5.5≦M<6.0 \circ 5. $0 \le M < 5.5$ M < 5.0

凡例

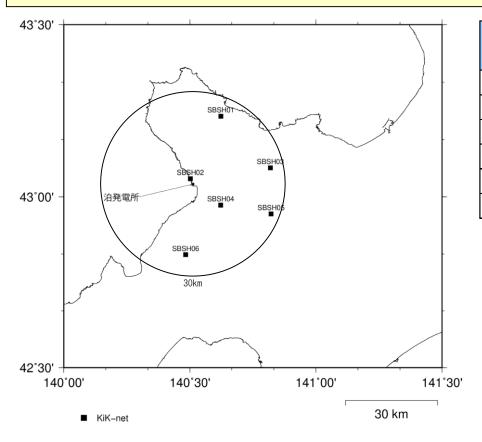
泊発電所における観測記録の震央分布図

① 観測記録の収集

一部加筆修正(R4.5.13審査会合資料)

敷地周辺の観測点における観測記録の選定

- ○模擬地震波の位相として用いる観測記録としては、敷地近傍で発生したMw6.5程度未満の内陸地殻内地震の敷地で得られた観測記録を用いるのが理想的と考えられるものの、敷地において、標準応答スペクトルに適用できる地震観測記録は得られていないことから、他機関の記録を用いた検討を実施する。
- ○観測記録の収集にあたっては、震源特性に加えて、伝播特性に着目し、可能な限り敷地近傍の記録を収集するため、敷地周辺の防災科学技術研究所のKiK-net観測点から、以下に示す全ての条件を満たす内陸地殻内地震の観測記録を収集する。※
- ○なお、泊発電所から30km以内には、K-NET観測点も設置されているが、いずれの観測点も岩盤上の観測点ではないことから、収集対象外としている。
- ※令和4年1月14日審査会合においては、震源特性に着目し、他機関の記録として原子力規制委員会「震源を特定せず策定する地震動に関する検討チーム(以下、検討チーム)」における標準応答スペクトルの検討に用いられているKiK-net観測点の地震観測記録のうち、泊発電所と異なる地域の地震ではあるものの、規模の大きい逆断層の地震の観測記録を用いて検討を実施していたが、震源特性に加えて、伝播特性に着目し、泊発電所周辺の観測点から観測記録を収集する。


	収集条件						
	泊発電所周辺の観測点で得られた内陸地殻内地震(逆断層)の地震の観測記録を収集						
	・泊発電所から半径30km以内の観測点で観測された地震						
観測記録の	・全国共通に考慮すべき地震動で想定される地震規模を踏まえ,M5.0以上の地震						
収集条件	・震源近傍を想定し,震央距離30km以内で発生した地震						
	・内陸地殻内地震として、震源深さ30km以内の地震						

① 観測記録の収集

一部加筆修正(R4.5.13審査会合資料)

泊発電所から半径30km以内の観測点

- ○泊発電所から半径30km以内のKiK-net観測点を下記に示す。
- ○なお、泊発電所から半径30km以内のKiK-net観測点の地盤情報の詳細を参考資料4.に示す。
- ○次頁以降に示すとおり、収集対象とした泊発電所から半径30km以内のKiK-net観測点において、先に示した収集条件に適合する 観測記録は得られていない。

	観測点名		S 波速度 Vs(m/s)					
10000000000000000000000000000000000000			地表	地中				
SBSH01	KiK-net	古平	550	1,370				
SBSH02	KiK-net	泊	370	1,650				
SBSH03	KiK-net	赤井川	180	730				
SBSH04	KiK-net	共和	400	1,810				
SBSH05	KiK-net	倶知安	230	1,730				
SBSH06	KiK-net	蘭越	480	830				

※S波速度:地震計位置のS波速度を示す。

観測記録の収集

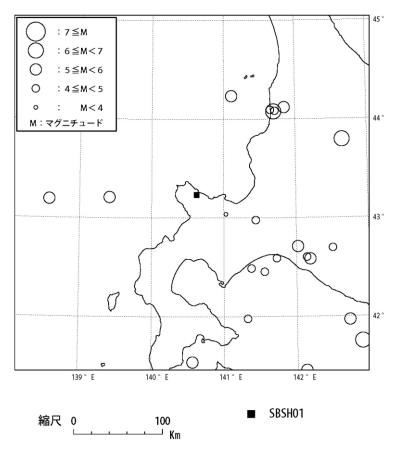
SBSH01古平の観測記録

:7≦M

:6≤M<7

:5≦M<6

: 4≦M<5


M:マグニチュード

0

M < 4

0

- ○SBSH01古平においては、89記録が収集されている。
- ○SBSH01古平における観測記録の震央分布図を下記に示す。
- ○なお、SBSH01古平における観測記録の一覧を参考資料5. に示す。
- ○SBSH01古平において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

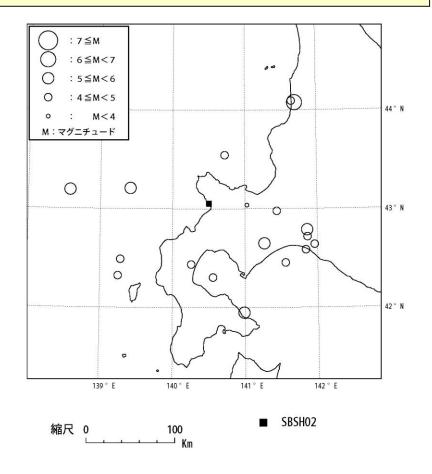
0 42° N 139 ° E 140° E 141 ° E 142 ° E SBSH01 縮尺 0 SBSH01古平における観測記録の震央分布図

24

44° N

43° N


SBSH01古平における観測記録の震央分布図 (全観測記録)

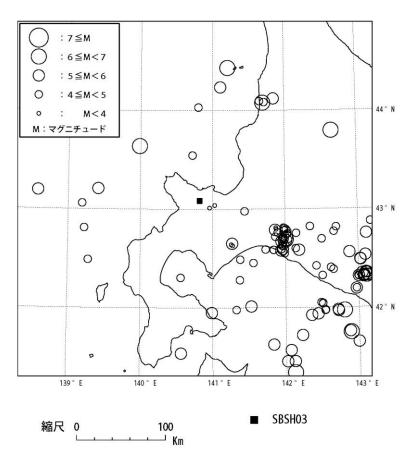

(震源深さ30km以内)

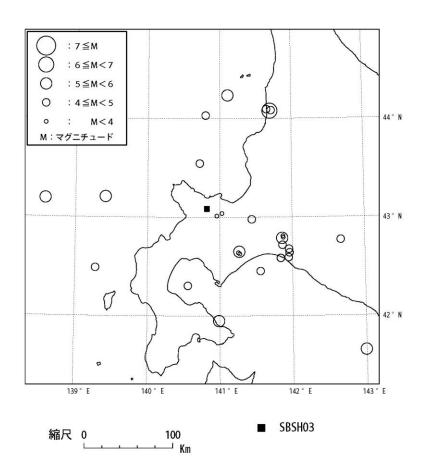
観測記録の収集

SBSH02泊の観測記録

- ○SBSH02泊においては、133記録が収集されている。
- ○SBSH02泊における観測記録の震央分布図を下記に示す。
- ○なお、SBSH02泊における観測記録の一覧を参考資料5. に示す。
- ○SBSH02泊において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

25

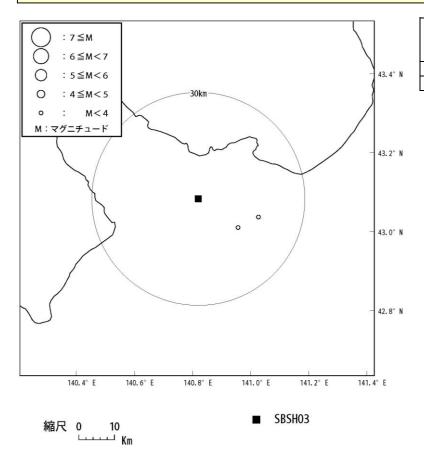

SBSH02泊における観測記録の震央分布図 (全観測記録)


SBSH02泊における観測記録の震央分布図 (震源深さ30km以内)

① 観測記録の収集

SBSH03赤井川の観測記録(その1)

- ○SBSH03赤井川においては、196記録が収集されている。
- ○SBSH03赤井川における観測記録の震央分布図を下記に示す。
- ○なお、SBSH03赤井川における観測記録の一覧を参考資料5. に示す。


SBSH03赤井川における観測記録の震央分布図 (全観測記録)

SBSH03赤井川における観測記録の震央分布図 (震源深さ30km以内)

観測記録の収集

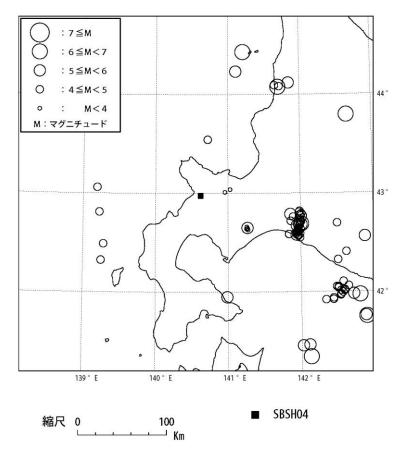
SBSH03赤井川の観測記録(その2)

- ○SBSH03赤井川において、震央距離30km以内および震源深さ30km以内の観測記録は、2記録が収集されている。
- ○また、SBSH03赤井川において、震央距離30km以内および震源深さ30km以内の観測記録(2記録)のうち、地震規模がM5.0以上 となる記録は観測されていない。

			北緯(度分)		東経(度分)		震源	М	震央	最大
No.	地震発生時刻	震央地名					深さ		距離	加速度
							(km)		(km)	(Gal)
151	2017/8/13 19:40:18	SHIRIBESHI REGION	43	0.7	140	57.43	2	3.5	14	2
6	2001/11/27 13:28:31	SHIRIBESHI REGION	43	2.3	141	1.69	1	3.8	18	3

27

SBSH03赤井川における観測記録一覧 (震央距離30km以内および震源深さ30km以内)


SBSH03赤井川における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

観測記録の収集

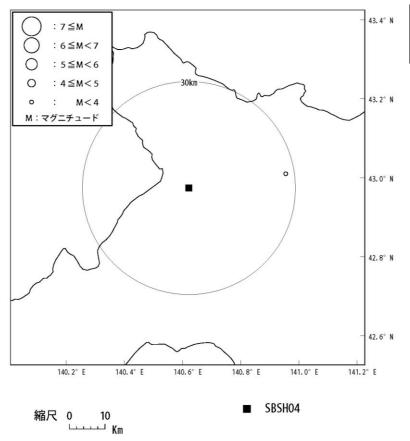
SBSH04共和の観測記録(その1)

:7≦M

- ○SBSH04共和においては、137記録が収集されている。
- ○SBSH04共和における観測記録の震央分布図を下記に示す。
- ○なお、SBSH04共和における観測記録の一覧を参考資料5、に示す。

:6≤M<7 :5≦M<6 : 4≦M<5 44° N M < 4M:マグニチュード 0 43° N 0 0 42° N 139° E 140 ° E 141 ° E 142° E SBSH04 縮尺 0

28


SBSH04共和における観測記録の震央分布図 (全観測記録)

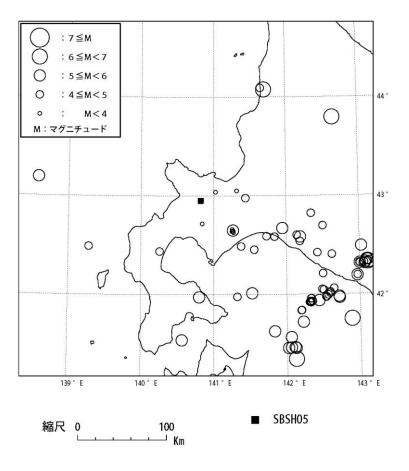
SBSH04共和における観測記録の震央分布図 (震源深さ30km以内)

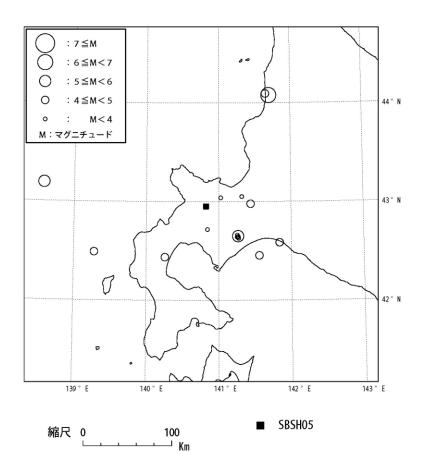
① 観測記録の収集

SBSH04共和の観測記録(その2)

- ○SBSH04共和において、震央距離30km以内および震源深さ30km以内の観測記録は、1記録が収集されている。
- ○また、SBSH04共和において、震央距離30km以内および震源深さ30km以内の観測記録(1記録)のうち、地震規模がM5.0以上となる記録は観測されていない。

							震源		震央	最大
No.	地震発生時刻	震央地名	北緯(度分)		東経(度分)		深さ	М	距離	加速度
							(km)		(km)	(Gal)
87	2017/8/13 19:40:18	SHIRIBESHI REGION	43	0.7	140	57.43	2	3.5	28	1


SBSH04共和における観測記録一覧 (震央距離30km以内および震源深さ30km以内)

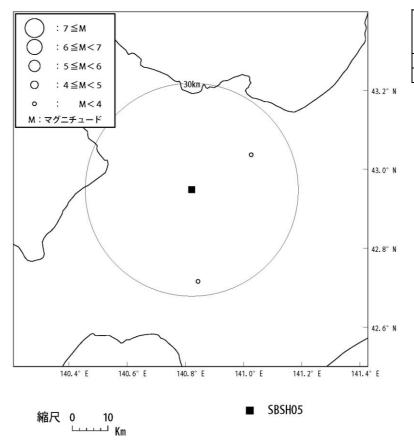

SBSH04共和における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

観測記録の収集

SBSH05倶知安の観測記録(その1)

- ○SBSH05倶知安においては、142記録が収集されている。
- ○SBSH05倶知安における観測記録の震央分布図を下記に示す。
- ○なお、SBSH05倶知安における観測記録の一覧を参考資料5. に示す。

30


SBSH05倶知安における観測記録の震央分布図 (全観測記録)

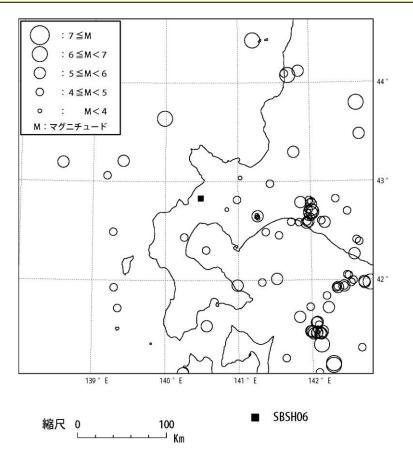
SBSH05倶知安における観測記録の震央分布図 (震源深さ30km以内)

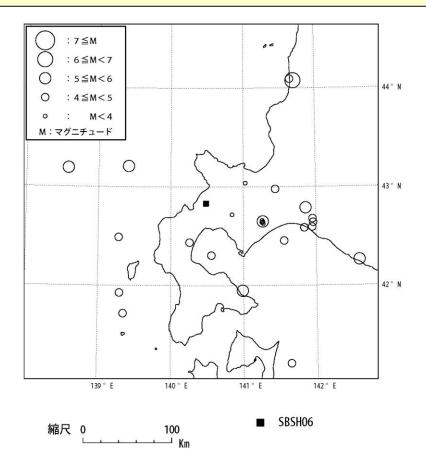
- 3.2 観測位相を用いた模擬地震波の検討
 - ① 観測記録の収集

SBSH05倶知安の観測記録(その2)

- ○SBSH05倶知安において、震央距離30km以内および震源深さ30km以内の観測記録は、2記録が収集されている。
- ○また、SBSH05倶知安において、震央距離30km以内および震源深さ30km以内の観測記録(2記録)のうち、地震規模がM5.0以上となる記録は観測されていない。

			北緯(度分)		東経(度分)		震源	М	震央	最大
No.	地震発生時刻	震央地名					深さ		距離	加速度
							(km)		(km)	(Gal)
5	2001/11/27 13:28:31	SHIRIBESHI REGION	43	2.3	141	1.69	1	3.8	19	3
64	2010/8/14 9:11:01	SHIRIBESHI REGION	42	43.08	140	50.63	4	2.5	26	0.4


SBSH05倶知安における観測記録一覧 (震央距離30km以内および震源深さ30km以内)


SBSH05倶知安における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

① 観測記録の収集

SBSH06蘭越の観測記録

- ○SBSH06蘭越においては、264記録が収集されている。
- ○SBSH06蘭越における観測記録の震央分布図を下記に示す。
- ○なお、SBSH06蘭越における観測記録の一覧を参考資料5. に示す。
- ○SBSH06蘭越において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

SBSH06蘭越における観測記録の震央分布図 (全観測記録)

SBSH06蘭越における観測記録の震央分布図 (震源深さ30km以内)

① 観測記録の収集

一部加筆修正(R4.5.13審査会合資料)

敷地周辺の観測点における観測記録の収集条件の拡大(地震規模)

- ○先に示した収集条件においては、模擬地震波の位相の検討に用いる観測記録が見つからなかったことから、これまでの収集条件を拡大して、観測記録の収集を実施する。
- ○なお、収集条件の拡大においては、可能な限り観測点近傍の内陸地殻内地震の観測記録を収集するため、地震規模、または、収集 範囲の条件を拡大して、観測記録を収集する。
- ○敷地周辺の観測点における観測記録の収集条件のうち、地震規模の収集条件を観測された全ての地震に拡大する。

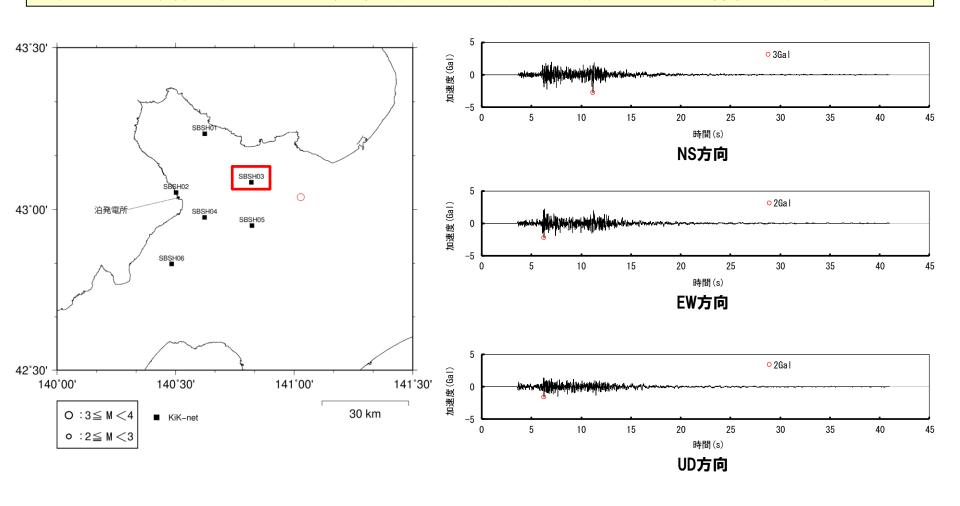
	収集条件(<u>下線部が収集条件を拡大した箇所</u>) 泊発電所周辺の観測点で得られた内陸地殻内地震の地震の観測記録を収集
	・泊発電所から半径30km以内の観測点で観測された地震
観測記録の	・観測された全ての規模の地震
収集条件	・震源近傍を想定し,震央距離30km以内で発生した地震
	・内陸地殻内地震として,震源深さ30km以内の地震

① 観測記録の収集

再揭(R4.5.13審査会合資料)

収集した地震・観測点・地震記録の一覧

- ○収集条件に適合する観測記録の一覧を下記に示す。
- ○次頁以降に収集条件に適合する観測記録の震央分布および加速度時刻歴波形を示す。
- ○なお, 次頁以降に示す観測記録は, 地中観測点の波形を示す。

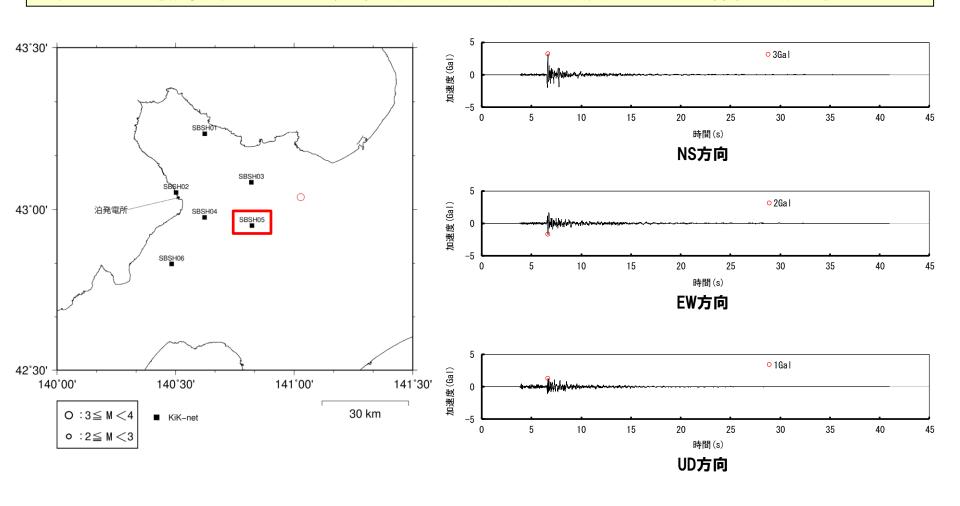

No	地震発生時刻	震央地名	地震 規模 (M)	震源深さ (km)	観測点名	震央距離 (km)	地中 S波速度 Vs(m/s)	観測記録の 最大加速度 (Gal)
	1 2001/11/27 13:28:31	後志地方	3.8	1	SBSH03 赤井川	18	730	3
	2001/11/27 13.20.31				SBSH05 倶知安	19	1,730	3
	2 2010/08/14 09:11:00	後志地方	2.5	4	SBSH05 倶知安	26	1,730	0.4
	2017/08/13 19:40:18	後志地方	3.5	1 2	SBSH03 赤井川	14	730	2
3					SBSH04 共和	28	1,810	0.5

① 観測記録の収集

再揭(R4.5.13審査会合資料)

SBSH03赤井川の観測記録(2001/11/27後志地方の地震(M3.8))

○下記にSBSH03赤井川で観測された2001/11/27後志地方の地震(M3.8)の震央分布および加速度時刻歴波形を示す。

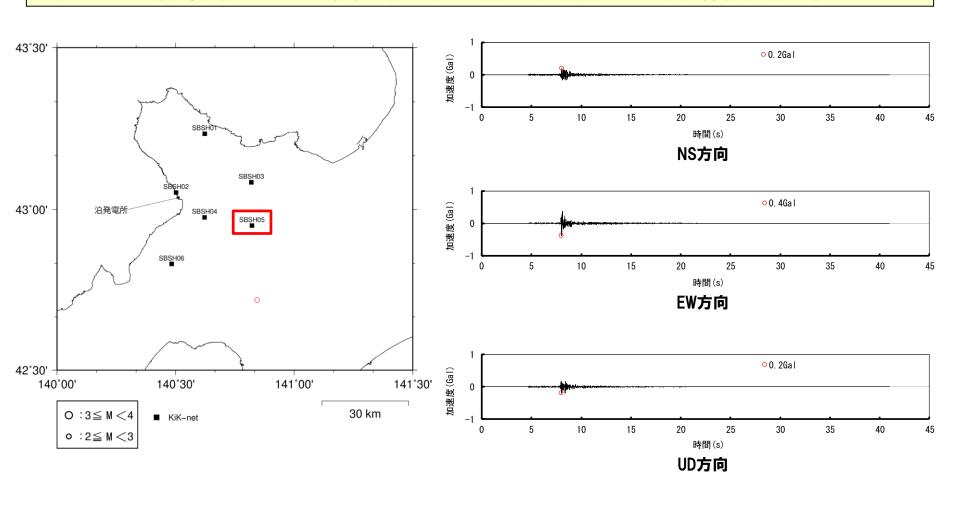


① 観測記録の収集

再揭(R4.5.13審査会合資料)

SBSH05倶知安の観測記録(2001/11/27後志地方の地震(M3.8))

○下記にSBSH05倶知安で観測された2001/11/27後志地方の地震(M3.8)の震央分布および加速度時刻歴波形を示す。

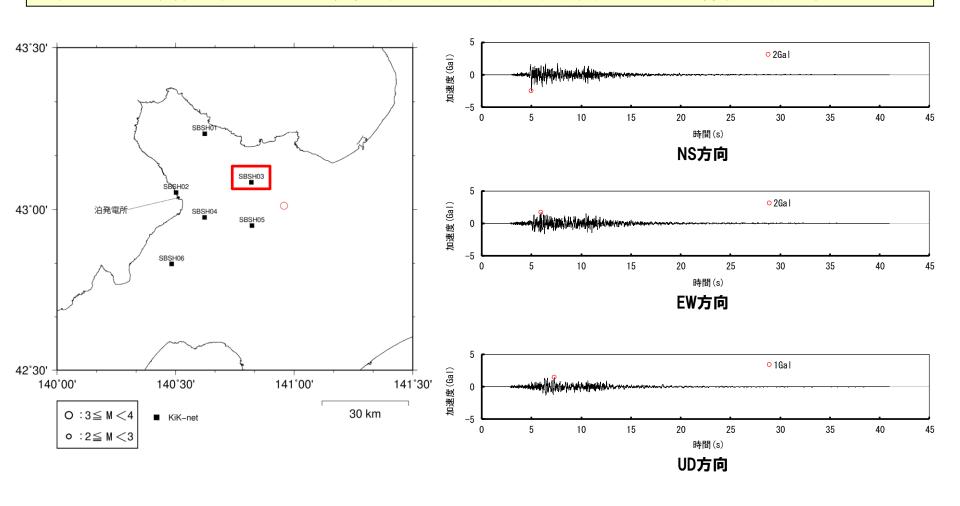


① 観測記録の収集

再揭(R4.5.13審査会合資料)

SBSH05倶知安の観測記録(2010/8/14後志地方の地震(M2.5))

○下記にSBSH05倶知安で観測された2010/8/14後志地方の地震(M2.5)の震央分布および加速度時刻歴波形を示す。

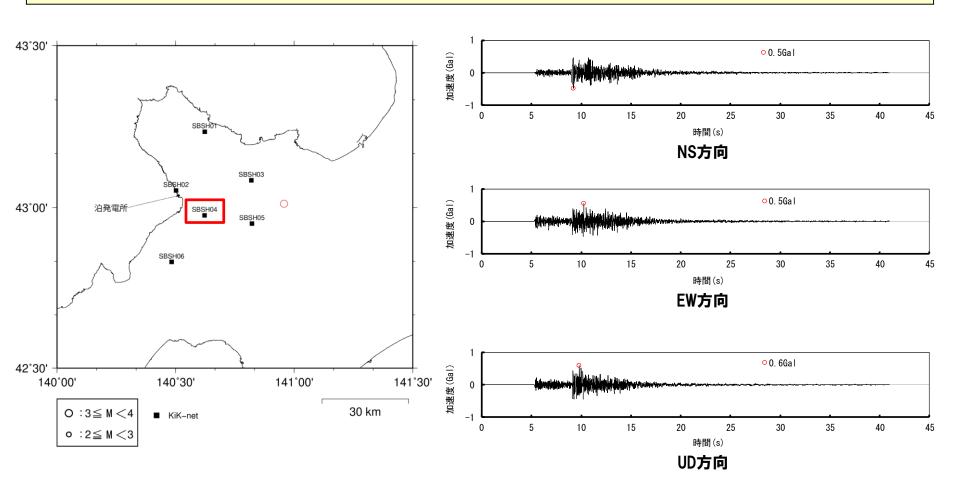


① 観測記録の収集

再揭(R4.5.13審査会合資料)

SBSH03赤井川の観測記録(2017/8/13後志地方の地震(M3.5))

○下記にSBSH03赤井川で観測された2017/8/13後志地方の地震(M3.5)の震央分布および加速度時刻歴波形を示す。



① 観測記録の収集

再揭(R4.5.13審査会合資料)

SBSH04共和の観測記録(2017/8/13後志地方の地震(M3.5))

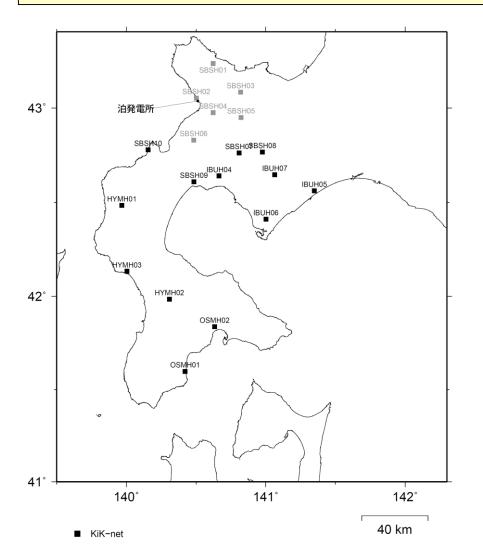
○下記にSBSH04共和で観測された2017/8/13後志地方の地震(M3.5)の震央分布および加速度時刻歴波形を示す。

① 観測記録の収集

一部加筆修正(R4.5.13審査会合資料)

敷地周辺の観測点における観測記録の収集条件の拡大(収集範囲)

- ○敷地周辺の観測点における観測記録の収集条件のうち、地震観測記録の収集範囲を拡大する。 収集範囲の拡大にあたって、敷地周辺で想定される地震動特性が含まれる観測記録を収集するため、断層タイプ(逆断層)や地質条件(主に新第三紀の火山岩類と第四紀の火砕堆積物が分布)が可能な限り整合する範囲として、北海道西部のKiK-net観測点まで収集範囲を拡大する。
- ○なお、北海道西部には、K-NET観測点も設置されているが、いずれの観測点も岩盤上の観測点ではないことから、収集対象外としている。


	収集条件(<u>下線部が収集条件を拡大した箇所</u>) 泊発電所周辺の観測点で得られた内陸地殻内地震(逆断層)の地震の観測記録を収集
	・ 北海道西部に位置するKiK-net観測点 で観測された地震
観測記録の	・全国共通に考慮すべき地震動で想定される地震規模を踏まえ,M5.0以上の地震
収集条件	・震源近傍を想定し,震央距離30km以内で発生した地震
	・内陸地殻内地震として、震源深さ30km以内の地震

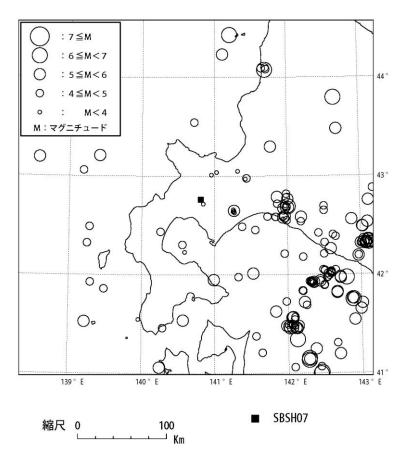
① 観測記録の収集

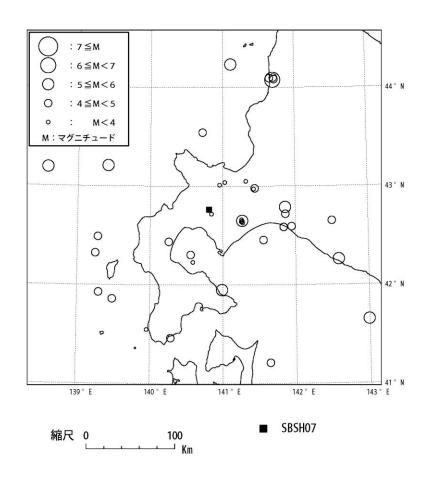
再揭(R4.5.13審査会合資料)

収集範囲の観測点位置

- ○北海道西部に位置するKiK-net観測点を下記に示す。
- ○なお、北海道西部に位置するKiK-net観測点の地盤情報の詳細を参考資料6. に示す。

	観測点名		S波速度V	/s (m/s)
	既然流石		地表	地中
KiK-net	SBSH07	真狩	190	730
KiK-net	SBSH08	喜茂別	200	1,430
KiK-net	SBSH09	黒松内	520	1,460
KiK-net	SBSH10	島牧	380	1,070
KiK-net	IBUH04	豊浦	150	1,060
KiK-net	IBUH05	白老	170	790
KiK-net	IBUH06	室蘭	200	1,500
KiK-net	IBUH07	大滝	400	1,330
KiK-net	HYMH01	北檜山	110	990
KiK-net	HYMH02	厚沢部	170	860
KiK-net	HYMH03	熊石	150	1,300
KiK-net	OSMH01	知内	180	900
KiK-net	OSMH02	上磯	200	750

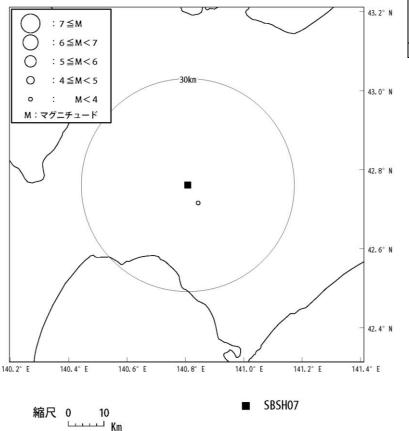

※SBSH01~06は泊発電所から半径30km以内の観測点


※S波速度:地震計位置のS波速度を示す。

観測記録の収集

SBSH07真狩の観測記録(その1)

- ○SBSH07真狩においては、344記録が収集されている。
- ○SBSH07真狩における観測記録の震央分布図を下記に示す。
- ○なお、SBSH07真狩における観測記録の一覧を参考資料7、に示す。


SBSH07真狩における観測記録の震央分布図 (全観測記録)

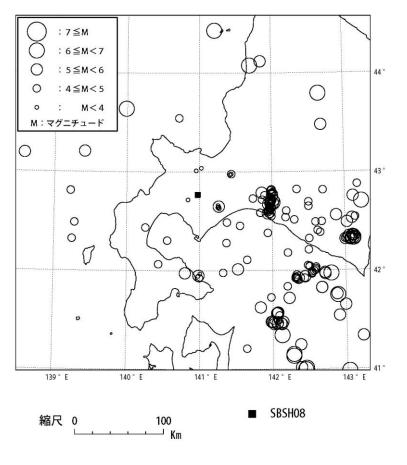
SBSH07真狩における観測記録の震央分布図 (震源深さ30km以内)

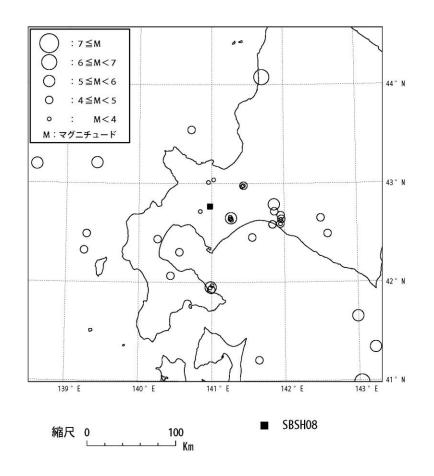
① 観測記録の収集

SBSH07真狩の観測記録(その2)

- ○SBSH07真狩において、震央距離30km以内および震源深さ30km以内の観測記録は、1記録が収集されている。
- ○また、SBSH07真狩において、震央距離30km以内および震源深さ30km以内の観測記録(1記録)のうち、地震規模がM5.0以上となる記録は観測されていない。

No.	地震発生時刻	震央地名	北緯(度分)	東経()	度分)	震源 深さ (km)	М	震央 距離 (km)	最大 加速度 (Gal)
150	2010/8/14 9:11:01	SHIRIBESHI REGION	42	43.08	140	50.63	4	2.5	6	4

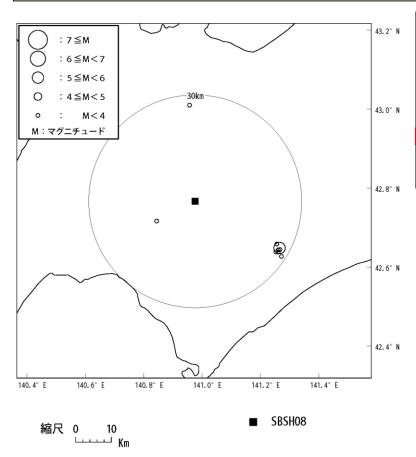

SBSH07真狩における観測記録一覧 (震央距離30km以内および震源深さ30km以内)


SBSH07真狩における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

① 観測記録の収集

SBSH08喜茂別の観測記録(その1)

- ○SBSH08喜茂別においては、268記録が収集されている。
- ○SBSH08喜茂別における観測記録の震央分布図を下記に示す。
- ○なお、SBSH08喜茂別における観測記録の一覧を参考資料7. に示す。


SBSH08喜茂別における観測記録の震央分布図 (全観測記録)

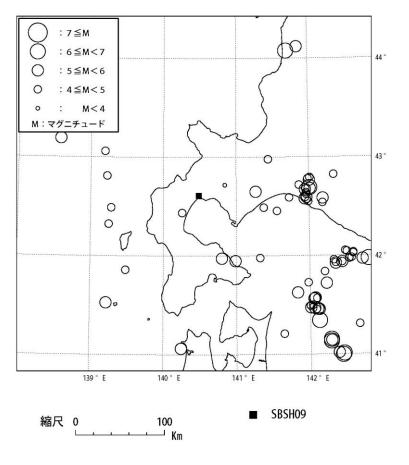
SBSH08喜茂別における観測記録の震央分布図 (震源深さ30km以内)

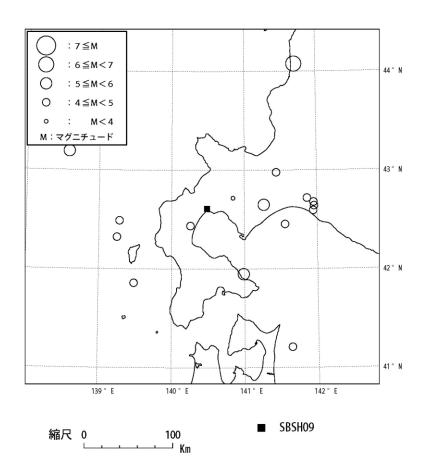
① 観測記録の収集

SBSH08喜茂別の観測記録(その2)

- ○SBSH08喜茂別において、震央距離30km以内および震源深さ30km以内の観測記録は、9記録が収集されている。
- ○また, SBSH08喜茂別において, 震央距離30km以内および震源深さ30km以内の観測記録(9記録)のうち, 地震規模がM5.0以上となる記録は1記録となる。

							震源		震央	最大
No.	地震発生時刻	震央地名	北緯 (度分)		東経 (度分)		深さ	М	距離	加速度
							(km)		(km)	(Gal)
71	2010/8/14 9:11:01	SHIRIBESHI REGION	42	43.08	140	50.63	4	2.5	12	2
134	2014/6/12 4:36:20	IBURI REGION	42	39.58	141	15.45	0	3.3	26	1
140	2014/7/10 18:16:26	IBURI REGION	42	38.39	141	15.24	2	3.9	27	2
176	2017/8/13 19:40:18	SHIRIBESHI REGION	43	0.7	140	57.43	2	3.5	27	1
138	2014/7/8 18:51:48	IBURI REGION	42	38.69	141	15.76	3	3.2	27	2
136	2014/7/8 18:05:24	IBURI REGION	42	38.99	141	16.02	3	5.6	27	18
139	2014/7/8 19:37:52	IBURI REGION	42	38.36	141	15.73	3	3.4	27	2
137	2014/7/8 18:08:41	IBURI REGION	42	38.75	141	16.1	5	3.5	27	1
129	2013/12/21 16:19:06	IBURI REGION	42	37.7	141	16.41	6	3.6	29	1

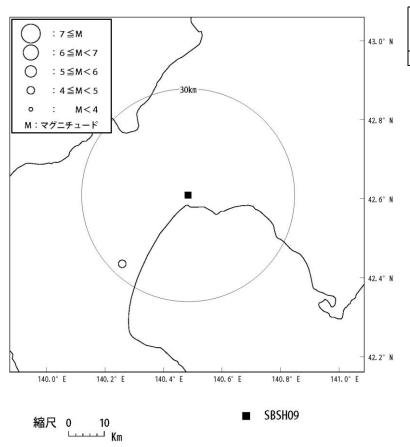

SBSH08喜茂別における観測記録一覧 (震源距離、震源深さ30km以内および地震規模M5.0以上)


SBSH08喜茂別における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

① 観測記録の収集

SBSH09黒松内の観測記録(その1)

- ○SBSH09黒松内においては、141記録が収集されている。
- ○SBSH09黒松内における観測記録の震央分布図を下記に示す。
- ○なお、SBSH09黒松内における観測記録の一覧を参考資料7. に示す。


SBSH09黒松内における観測記録の震央分布図 (全観測記録)

SBSH09黒松内における観測記録の震央分布図 (震源深さ30km以内)

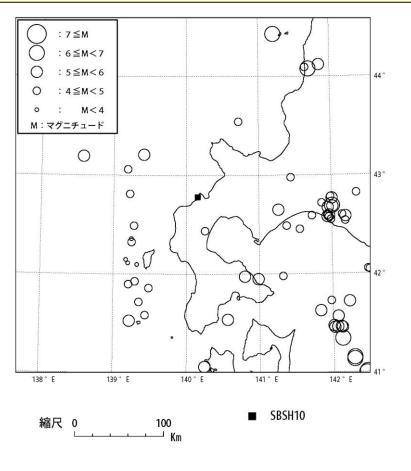
- 3.2 観測位相を用いた模擬地震波の検討
 - 観測記録の収集

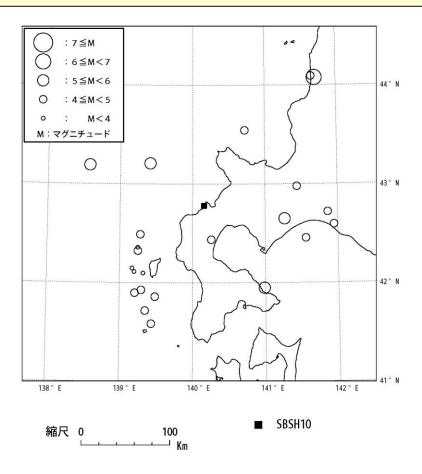
SBSH09黒松内の観測記録(その2)

- ○SBSH09黒松内において、震央距離30km以内および震源深さ30km以内の観測記録は、1記録が収集されている。
- ○また、SBSH09黒松内において、震央距離30km以内および震源深さ30km以内の観測記録(1記録)のうち、地震規模がM5.0以上 となる記録は観測されていない。

			11.44 (市八)		本 奴 (庶八)		震源		震央	最大
No.	地震発生時刻	震央地名	北緯()	度分)	東経()	度分)	深さ	M	距離	加速度
							(km)		(km)	(Gal)
41	2008/1/13 2:11:04	OSHIMA PEN REG HOKKAIDO	42	26.19	140	15.47	11	4.1	27	1

47

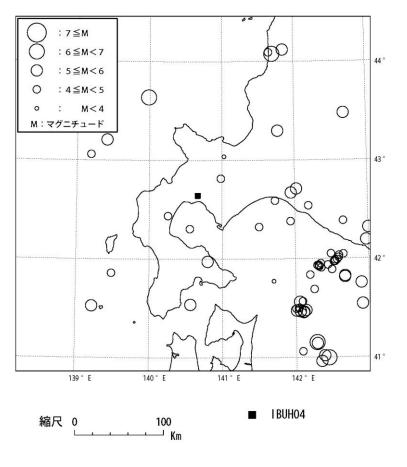

SBSH09黒松内における観測記録一覧 (震央距離30km以内および震源深さ30km以内)

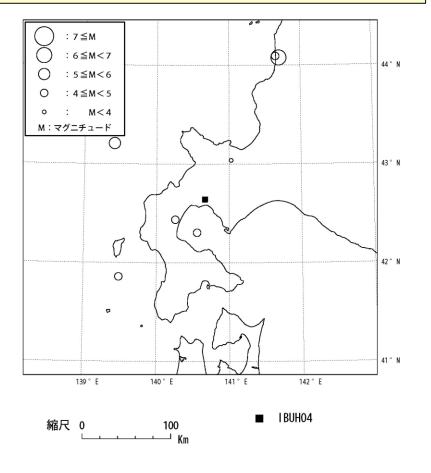

SBSH09黒松内における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

① 観測記録の収集

SBSH10島牧の観測記録

- ○SBSH10島牧においては、149記録が収集されている。
- ○SBSH10島牧における観測記録の震央分布図を下記に示す。
- ○なお、SBSH10島牧における観測記録の一覧を参考資料7. に示す。
- ○SBSH10島牧において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

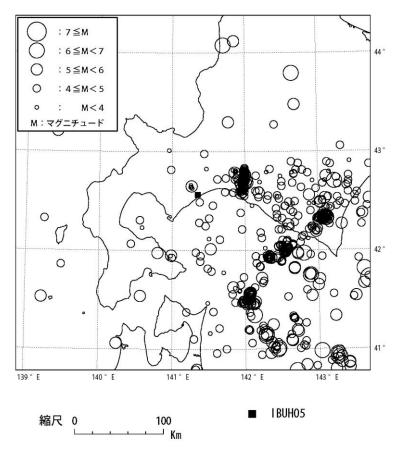

SBSH10島牧における観測記録の震央分布図 (全観測記録)

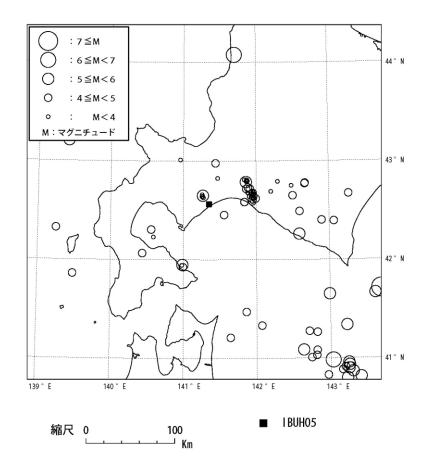

SBSH10島牧における観測記録の震央分布図 (震源深さ30km以内)

観測記録の収集

IBUH04豊浦の観測記録

- ○IBUH04豊浦においては、128記録が収集されている。
- ○IBUH04豊浦における観測記録の震央分布図を下記に示す。
- ○なお、IBUH04豊浦における観測記録の一覧を参考資料7、に示す。
- ○IBUH04豊浦において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

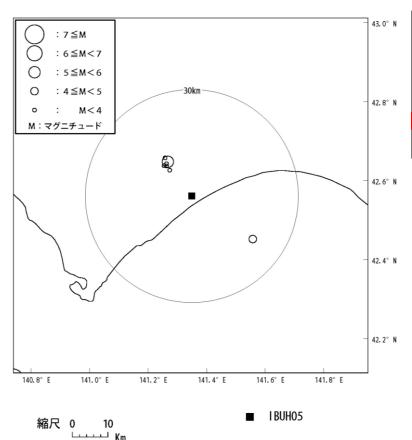

IBUH04豊浦における観測記録の震央分布図 (全観測記録)


IBUH04豊浦における観測記録の震央分布図 (震源深さ30km以内)

観測記録の収集

IBUH05白老の観測記録(その1)

- ○IBUH05白老においては、944記録が収集されている。
- ○IBUH05白老における観測記録の震央分布図を下記に示す。
- ○なお、IBUH05白老における観測記録の一覧を参考資料7、に示す。


IBUH05白老における観測記録の震央分布図 (全観測記録)

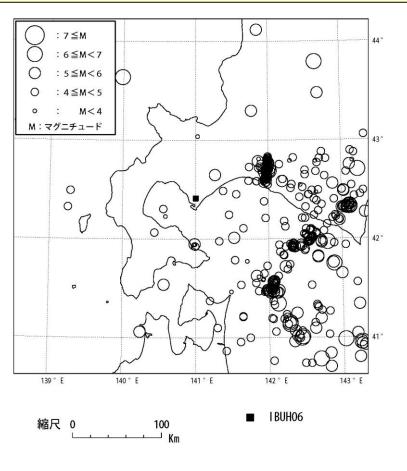
IBUH05白老における観測記録の震央分布図 (震源深さ30km以内)

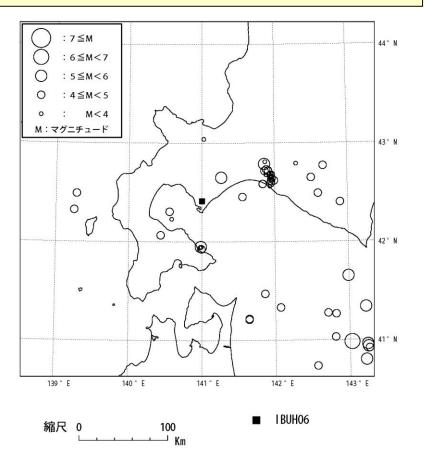
① 観測記録の収集

IBUH05白老の観測記録(その2)

- ○IBUH05白老において、震央距離30km以内および震源深さ30km以内の観測記録は、7記録が収集されている。
- ○また, IBUH05白老において, 震央距離30km以内および震源深さ30km以内の観測記録(7記録)のうち, 地震規模がM5.0以上となるのは、1記録となる。

							震源		震央	最大
No.	地震発生時刻	震央地名	北緯(度分)	東経(度分)	深さ	M	距離	加速度
					(km)		(km)	(Gal)		
511	2013/12/21 16:19:06	IBURI REGION	42	37.7	141	16.41	6	3.6	10	32
532	2014/7/8 19:37:52	IBURI REGION	42	38.36	141	15.73	3	3.4	11	13
531	2014/7/8 18:51:48	IBURI REGION	42	38.69	141	15.76	3	3.2	12	12
533	2014/7/10 18:16:26	IBURI REGION	42	38.39	141	15.24	2	3.9	12	14
530	2014/7/8 18:05:24	IBURI REGION	42	38.99	141	16.02	3	5.6	12	217
525	2014/6/12 4:36:20	IBURI REGION	42	39.58	141	15.45	0	3.3	13	18
304	2009/10/5 9:35:13	S OFF TOMAKOMAI	42	27.24	141	33.52	20	4.7	21	6

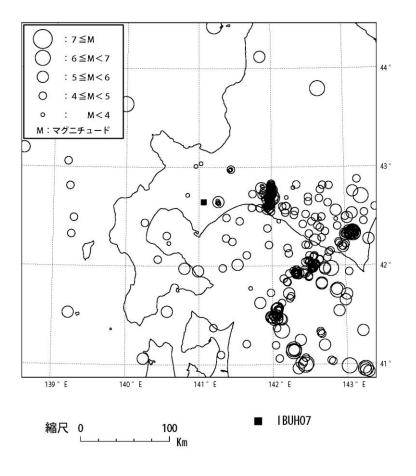

IBUH05白老における観測記録一覧 (震源距離,震源距離30km以内および地震規模M5.0以上)

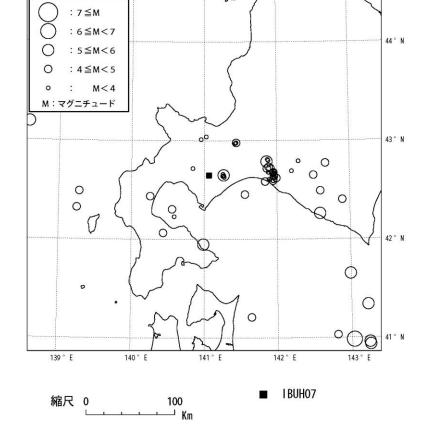

IBUH05白老における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

① 観測記録の収集

IBUH06室蘭の観測記録

- ○IBUH06室蘭においては、605記録が収集されている。
- ○IBUH06室蘭における観測記録の震央分布図を下記に示す。
- ○なお、IBUH06室蘭における観測記録の一覧を参考資料7. に示す。
- ○IBUH06室蘭において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

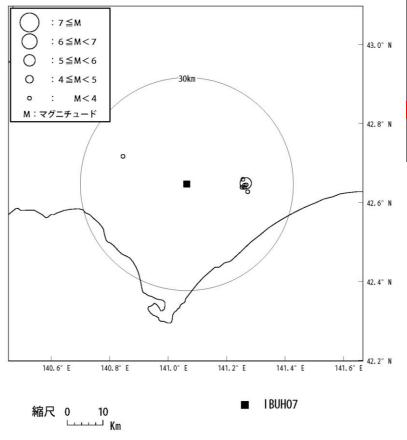

IBUH06室蘭における観測記録の震央分布図 (全観測記録)


IBUH06室蘭における観測記録の震央分布図 (震源深さ30km以内)

① 観測記録の収集

IBUH07大滝の観測記録(その1)

- ○IBUH07大滝においては、580記録が収集されている。
- ○IBUH07大滝における観測記録の震央分布図を下記に示す。
- ○なお、IBUH07大滝における観測記録の一覧を参考資料7. に示す。


IBUH07大滝における観測記録の震央分布図 (全観測記録)

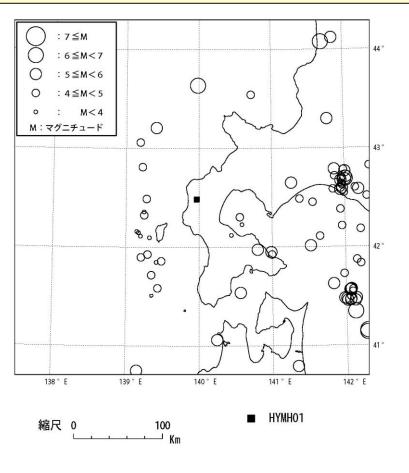
IBUH07大滝における観測記録の震央分布図 (震源深さ30km以内)

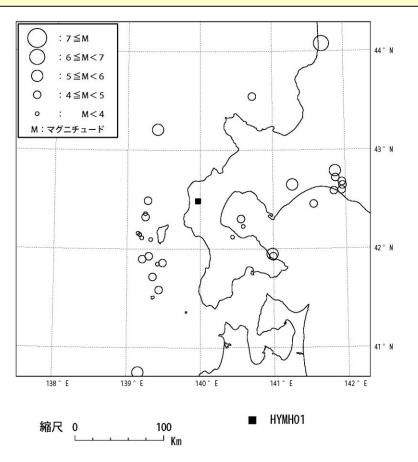
- 3.2 観測位相を用いた模擬地震波の検討
 - ① 観測記録の収集

IBUH07大滝の観測記録(その2)

- ○IBUH07大滝において、震央距離30km以内および震源深さ30km以内の観測記録は、8記録が収集されている。
- ○また, IBUH07大滝において, 震央距離30km以内および震源深さ30km以内の観測記録(8記録)のうち, 地震規模がM5.0以上となるのは、1記録となる。

							震源		震央	最大
No.	地震発生時刻	震央地名	北緯(度分)		東経(度分)	深さ	M	距離	加速度
									(km)	(Gal)
286	2014/7/10 18:16:26	IBURI REGION	42	38.39	141	15.24	2	3.9	16	11
278	2014/6/12 4:36:20	IBURI REGION	42	39.58	141	15.45	0	3.3	16	7
285	2014/7/8 19:37:52	IBURI REGION	42	38.36	141	15.73	3	3.4	16	6
284	2014/7/8 18:51:48	IBURI REGION	42	38.69	141	15.76	3	3.2	16	5
282	2014/7/8 18:05:24	IBURI REGION	42	38.99	141	16.02	3	5.6	17	68
283	2014/7/8 18:08:41	IBURI REGION	42	38.75	141	16.1	5	3.5	17	16
271	2013/12/21 16:19:06	IBURI REGION	42	37.7	141	16.41	6	3.6	17	2
167	2010/8/14 9:11:01	SHIRIBESHI REGION	42	43.08	140	50.63	4	2.5	20	1

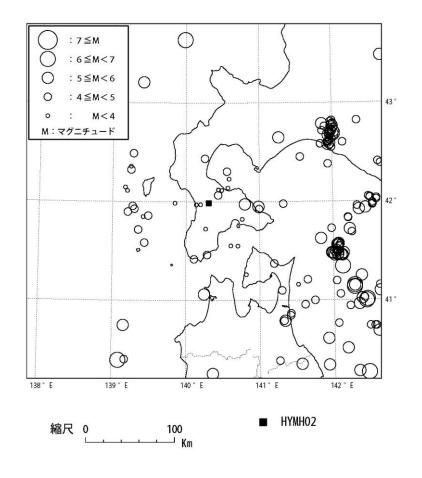

IBUH07大滝における観測記録一覧 (震央距離,震源深さ30km以内および地震規模M5.0以上)

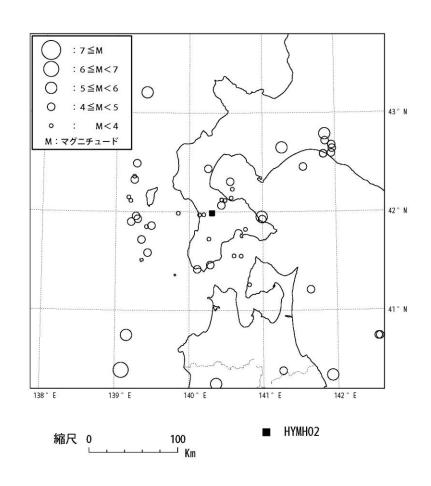

IBUH07大滝における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

観測記録の収集

HYMH01北檜山の観測記録

- 〇HYMH01北檜山においては、239記録が収集されている。
- 〇HYMH01北檜山における観測記録の震央分布図を下記に示す。
- ○なお、HYMH01北檜山における観測記録の一覧を参考資料7.に示す。
- ○HYMH01北檜山において、震央距離30km以内および震源深さ30km以内の観測記録は、観測されていない。

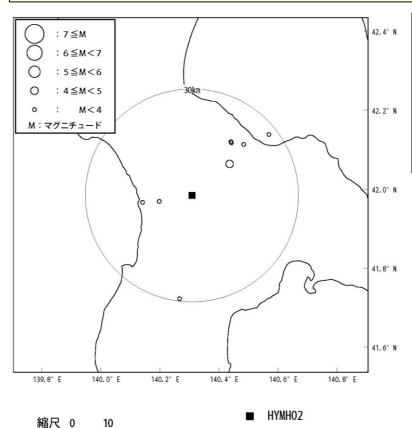

HYMH01北檜山における観測記録の震央分布図 (全観測記録)


HYMH01北檜山における観測記録の震央分布図 (震源深さ30km以内)

① 観測記録の収集

HYMH02厚沢部の観測記録(その1)

- ○HYMH02厚沢部においては、344記録が収集されている。
- ○HYMH02厚沢部における観測記録の震央分布図を下記に示す。
- ○なお、HYMH02厚沢部における観測記録の一覧を参考資料7. に示す。


HYMH02厚沢部における観測記録の震央分布図 (全観測記録)

HYMH02厚沢部における観測記録の震央分布図 (震源深さ30km以内)

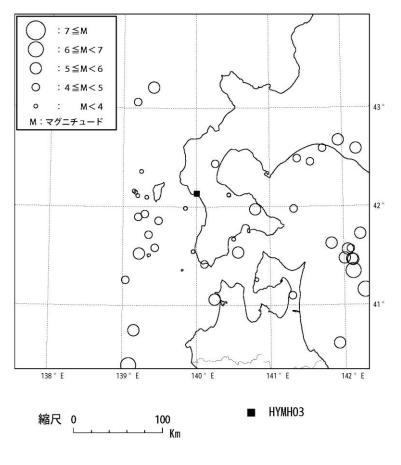
観測記録の収集

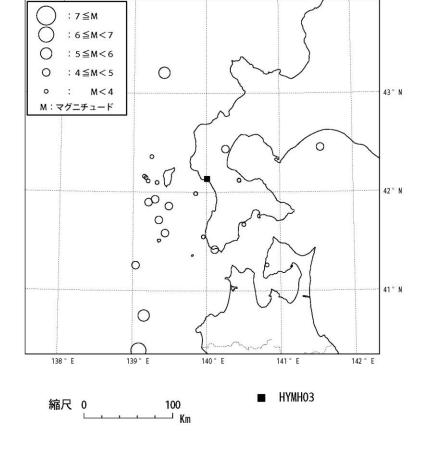
HYMH02厚沢部の観測記録(その2)

- HYMH02厚沢部において、震央距離30km以内および震源深さ30km以内の観測記録は、8記録が収集されている。
- ○また、HYMH02厚沢部において、震央距離30km以内および震源深さ30km以内の観測記録(8記録)のうち、地震規模がM5.0以上 となる記録は観測されていない。

			北緯(度分)				震源		震央	最大
No.	地震発生時刻	震央地名			東経(度分)		深さ	M	距離	加速度
									(km)	(Gal)
156	2011/11/16 15:25:50	OSHIMA PEN REG HOKKAIDO	41	58.24	140	11.84	3	2.9	9	3
311	2019/12/22 14:24:51	OSHIMA PEN REG HOKKAIDO	42	3.94	140	26.23	10	4.2	14	4
176	2012/8/7 18:13:44	OSHIMA PEN REG HOKKAIDO	41	58.09	140	8.43	2	2.3	14	1
161	2012/2/15 11:59:47	OSHIMA PEN REG HOKKAIDO	42	7.14	140	26.6	13	3.2	19	2
162	2012/2/15 13:36:33	OSHIMA PEN REG HOKKAIDO	42	7.32	140	26.51	8	3.6	19	4
227	2015/9/6 13:02:38	OSHIMA PEN REG HOKKAIDO	42	6.9	140	29.13	10	2.8	21	0.5
159	2012/1/16 16:40:30	UCHIURA BAY REGION	42	8.4	140	34.29	14	2.9	28	0.3
319	2020/9/11 5:22:17	OSHIMA PEN REG HOKKAIDO	41	43.46	140	16.01	12	3.2	29	1

57

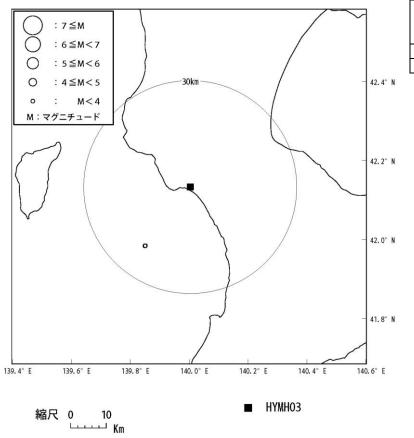

HYMH02厚沢部における観測記録一覧 (震央距離30km以内および震源深さ30km以内)


HYMH02厚沢部における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

① 観測記録の収集

HYMH03熊石の観測記録(その1)

- ○HYMH03熊石においては、80記録が収集されている。
- ○HYMH03熊石における観測記録の震央分布図を下記に示す。
- ○なお、HYMH03熊石における観測記録の一覧を参考資料7. に示す。


HYMH03熊石における観測記録の震央分布図 (全観測記録)

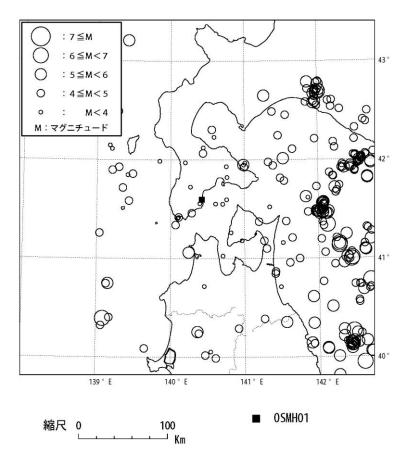
HYMH03熊石における観測記録の震央分布図 (震源深さ30km以内)

① 観測記録の収集

HYMH03熊石の観測記録(その2)

- ○HYMH03熊石において、震央距離30km以内および震源深さ30km以内の観測記録は、2記録が収集されている。
- ○また、HYMH03熊石において、震央距離30km以内および震源深さ30km以内の観測記録(2記録)のうち、地震規模がM5.0以上となる記録は観測されていない。

							震源		震央	最大
No.	地震発生時刻	震央地名	北緯()	度分)	東経()	度分)	深さ	М	距離	加速度
							(km)		(km)	(Gal)
31	2007/3/16 9:18:18	SW OFF HOKKAIDO	41	59.15	139	51.06	13	3.4	21	1
26	2005/10/20 10:24:29	SW OFF HOKKAIDO	41	59.13	139	50.95	13	3.8	21	3


HYMH03熊石における観測記録一覧 (震央距離30km以内および震源深さ30km以内)

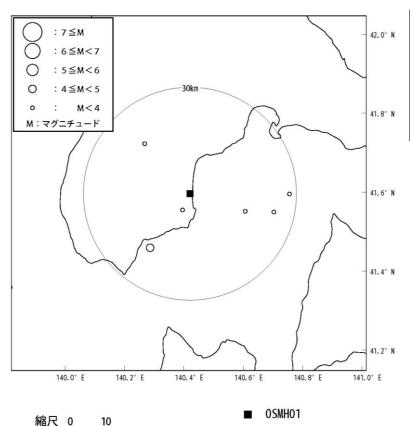
HYMH03熊石における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

観測記録の収集

OSMH01知内の観測記録(その1)

- ○OSMH01知内においては、525記録が収集されている。
- ○OSMHO1知内における観測記録の震央分布図を下記に示す。
- ○なお、OSMH01知内における観測記録の一覧を参考資料7. に示す。

: 7≦M :6≦M<7 43° N :5≤M<6 : 4≦M<5 M < 4M:マグニチュード 8 42° N 00 0 0 9 000 0 0 41° N 0 00 40° N 0 141° E 139° E 140° E **0SMH01** 縮尺 0 100


OSMH01知内における観測記録の震央分布図 (全観測記録)

OSMH01知内における観測記録の震央分布図 (震源深さ30km以内)

観測記録の収集

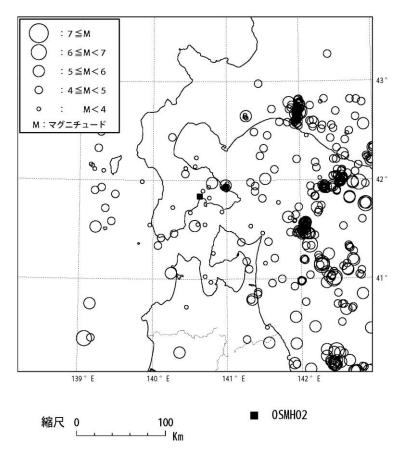
OSMH01知内の観測記録(その2)

- ○OSMHO1知内において、震央距離30km以内および震源深さ30km以内の観測記録は、6記録が収集されている。
- ○また、OSMH01知内において、震央距離30km以内および震源深さ30km以内の観測記録(6記録)のうち、地震規模がM5.0以上と なる記録は観測されていない。

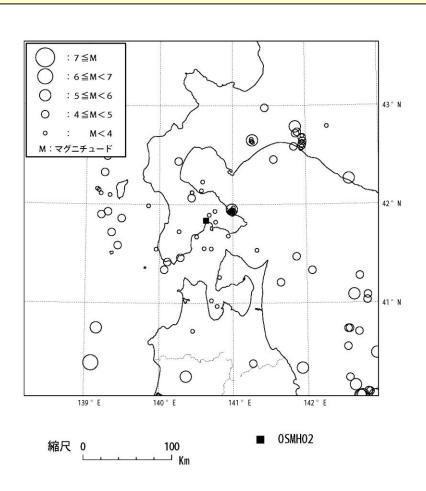
							震源		震央	最大
No.	地震発生時刻	震央地名	北緯 (度分)		東経 (度分)		深さ	М	距離	加速度
									(km)	(Gal)
402	2017/1/14 8:59:19	TSUGARU STRAIT REGION	41	33.41	140	23.73	6	2.4	5	5
392	2016/9/25 13:03:49	TSUGARU STRAIT REGION	41	33.2	140	36.47	13	3.7	16	7
34	2003/7/20 2:25:18	TSUGARU STRAIT REGION	41	27.66	140	17.15	9	4.1	19	6
493	2020/9/11 5:22:17	OSHIMA PEN REG HOKKAIDO	41	43.46	140	16.01	12	3.2	19	1
89	2006/2/24 17:51:51	TSUGARU STRAIT REGION	41	33.07	140	42.27	16	3.6	24	1
482	2020/2/24 6:19:43	TSUGARU STRAIT REGION	41	35.8	140	45.49	11	3.3	28	1

61

OSMH01知内における観測記録一覧 (震央距離30km以内および震源深さ30km以内)


OSMH01知内における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

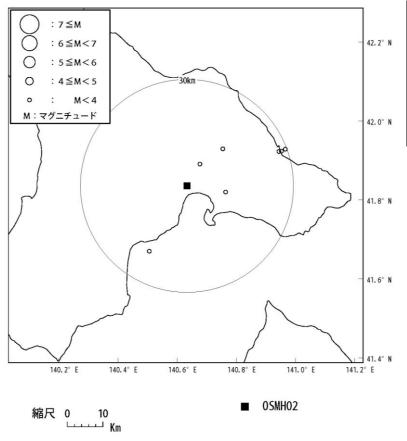
LLLL Km


① 観測記録の収集

OSMH02上磯の観測記録(その1)

- ○OSMH02上磯においては、798記録が収集されている。
- ○OSMHO2上磯における観測記録の震央分布図を下記に示す。
- ○なお、OSMHO2上磯における観測記録の一覧を参考資料7.に示す。

OSMH02上磯における観測記録の震央分布図 (全観測記録)



OSMHO2上磯における観測記録の震央分布図 (震源深さ30km以内)

① 観測記録の収集

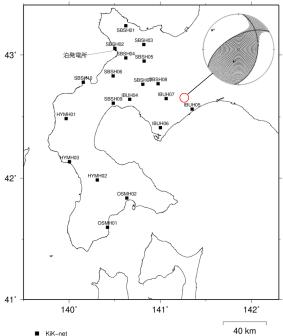
OSMH02上磯の観測記録(その2)

- ○OSMHO2上磯において、震央距離30km以内および震源深さ30km以内の観測記録は、7記録が収集されている。
- ○また、OSMH02上磯において、震央距離30km以内および震源深さ30km以内の観測記録(7記録)のうち、地震規模がM5.0以上となる記録は観測されていない。

							震源		震央	最大
No.	地震発生時刻	震央地名	北緯(度分) 東経(度分)		東経 (度分)		深さ	M	距離	加速度
					(km)		(km)	(Gal)		
184	2007/12/27 22:40:28	OSHIMA PEN REG HOKKAIDO	41	53.56	140	40.63	10	2.8	7	6
630	2017/10/4 18:29:01	OSHIMA PEN REG HOKKAIDO	41	49.32	140	45.87	14	3.5	11	5
87	2003/12/17 20:52:14	OSHIMA PEN REG HOKKAIDO	41	55.88	140	45.32	12	3.6	15	10
235	2009/4/21 5:16:48	TSUGARU STRAIT REGION	41	40.32	140	30.32	15	3.1	21	1
662	2018/7/26 14:36:19	OSHIMA PEN REG HOKKAIDO	41	55.46	140	56.77	10	2.3	28	1
661	2018/7/23 22:51:15	UCHIURA BAY REGION	41	55.5	140	57.29	11	2.5	28	1
790	2020/8/1 19:18:49	UCHIURA BAY REGION	41	55.8	140	58.08	8	2.4	30	1

OSMHO2上磯における観測記録一覧 (震央距離30km以内および震源深さ30km以内)

OSMHO2上磯における観測記録の震央分布図 (震央距離30km以内および震源深さ30km以内)

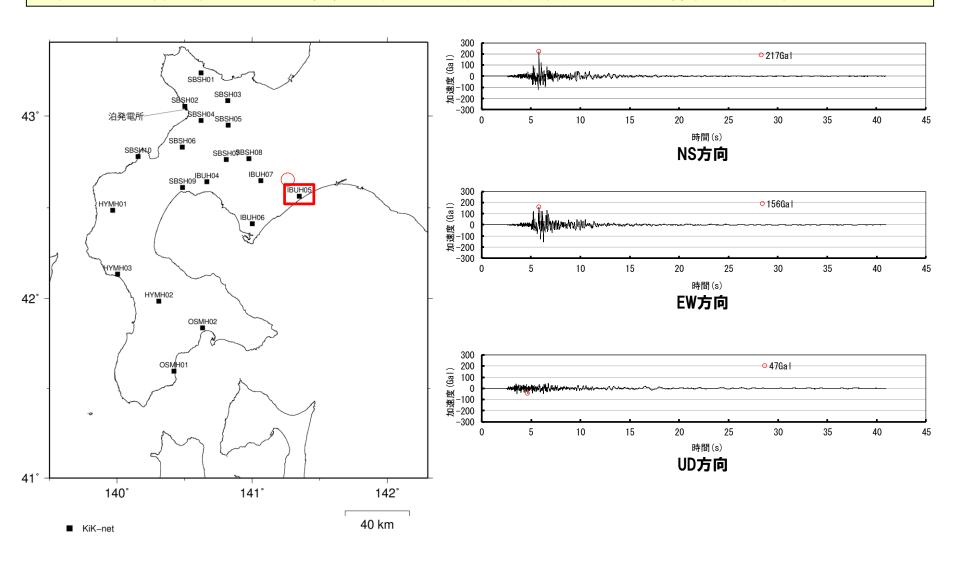

① 観測記録の収集

再揭(R4.5.13審査会合資料)

収集した地震・観測点・地震記録の一覧

- ○収集条件に適合する観測記録の一覧を下記に示す。
- ○次頁以降に収集条件に適合する観測記録の震央分布および加速度時刻歴波形を示す。
- ○なお, 次頁以降に示す観測記録は, 地中観測点の波形を示す。

No	地震発生時刻	震央地名	地震 規模 (M)	震源深さ (km)	観測点名	震央距離 (km)	地中 S波速度 Vs(m/s)	観測記録の 最大加速度 (Gal)					
					IBUH05 白老	12	790	217					
1	2014/07/08 18:05:24	胆振地方	胆振地方	胆振地方	胆振地方	胆振地方	胆振地方	5.6	3	IBUH07 大滝	17	1,330	68
					SBSH08 喜茂別	27	1,430	18					

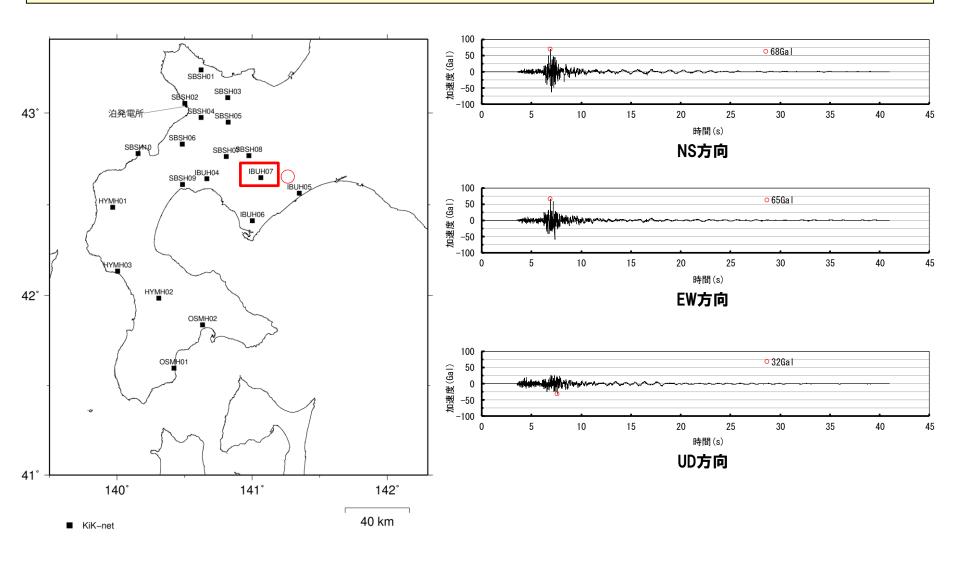

※メカニズム解: 防災科学技術研究所 F-net

① 観測記録の収集

再揭(R4.5.13審査会合資料)

IBUH05白老の観測記録(2014/7/8胆振地方の地震(M5.6))

○下記にIBUH05白老で観測された2014/7/8胆振地方の地震(M5.6)の震央分布および加速度時刻歴波形を示す。

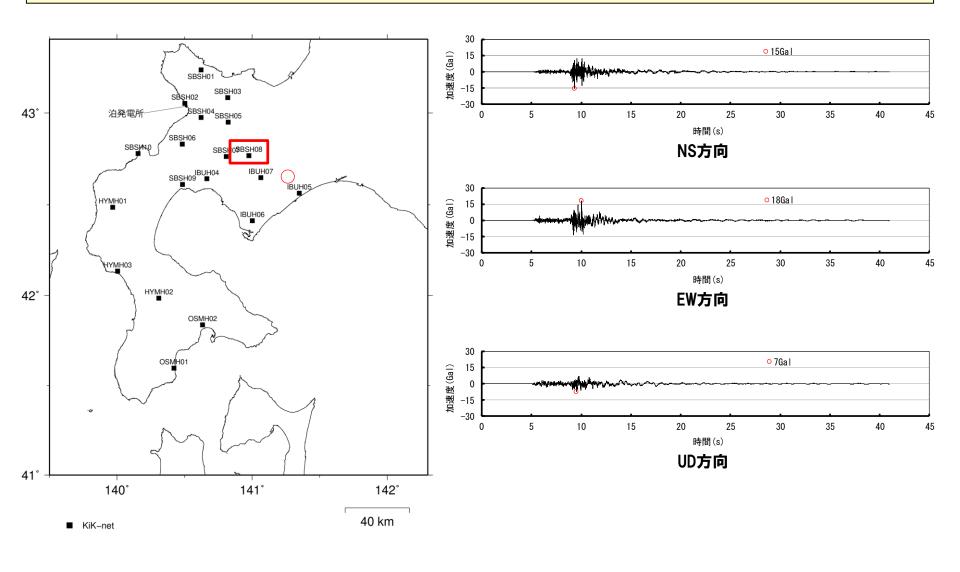


① 観測記録の収集

再揭(R4.5.13審査会合資料)

IBUH07大滝の観測記録(2014/7/8胆振地方の地震(M5.6))

○下記にIBUH07大滝で観測された2014/7/8胆振地方の地震(M5.6)の震央分布および加速度時刻歴波形を示す。



① 観測記録の収集

再揭(R4.5.13審査会合資料)

SBSH08喜茂別の観測記録(2014/7/8胆振地方の地震(M5.6))

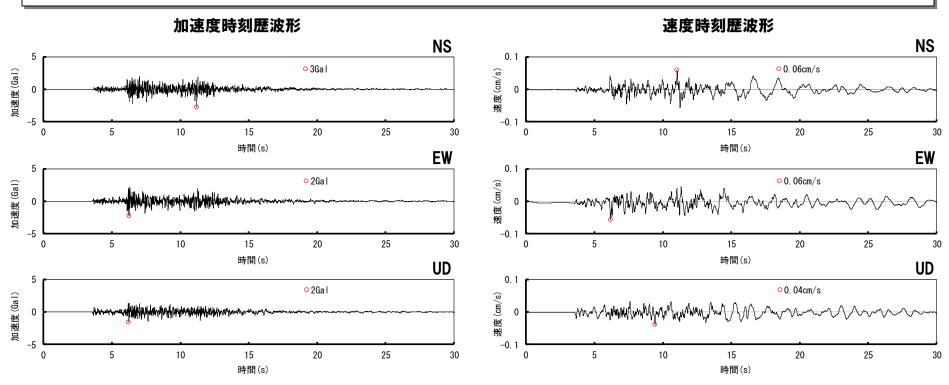
○下記にSBSH08喜茂別で観測された2014/7/8胆振地方の地震(M5.6)の震央分布および加速度時刻歴波形を示す。

① 観測記録の収集

観測記録の収集 まとめ

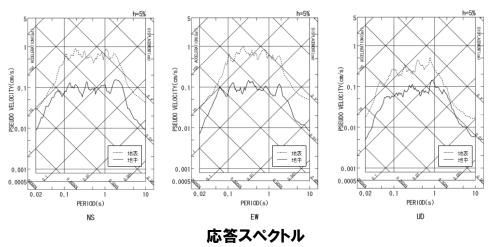
- ○敷地,敷地周辺および北海道西部における他機関の観測記録を対象とした観測記録の収集結果を下記に示す。
- 〇収集条件(地震規模や収集対象範囲)を拡大し、敷地周辺および北海道西部における他機関の観測記録を対象として4地震8記録の観測記録を収集した。

観測点名		記録数			
		全記録数	震源深さ30km以内	震源深さ30km以内 および 震央距離30km以内	震央距離30km以内
泊発電所(1・2号,3号炉観測点)		64	27	0	0
泊発電所 (深部観測点)		5	2	0	0
敷地から30km以内の KiK-net観測点	KiK-net SBSH01古平	89	23	0	0
	KiK-net SBSH02泊	133	35	0	0
	KiK-net SBSH03赤井川	196	51	2	0
	KiK-net SBSH04共和	137	34	1	0
	KiK-net SBSH05倶知安	142	35	2	0
	KiK-net SBSH06蘭越	264	78	0	0
北海道西部に位置する KiK-net観測点	KiK-net SBSH07真狩	344	95	1	0
	KiK-net SBSH08喜茂別	268	57	9	1
	KiK-net SBSH09黒松内	141	35	1	0
	KiK-net SBSH10島牧	149	49	0	0
	KiK-net IBUH04豊浦	128	19	0	0
	KiK-net IBUH05白老	944	177	7	1
	KiK-net IBUH06室蘭	605	96	0	0
	KiK-net IBUH07大滝	580	110	8	1
	KiK-net HYMH01北檜山	239	62	0	0
	KiK-net HYMH02厚沢部	344	115	8	0
	KiK-net HYMH03熊石	80	33	2	0
	KiK-net OSMH01知内	525	166	6	0
	KiK-net OSMH02上磯	798	208	7	0

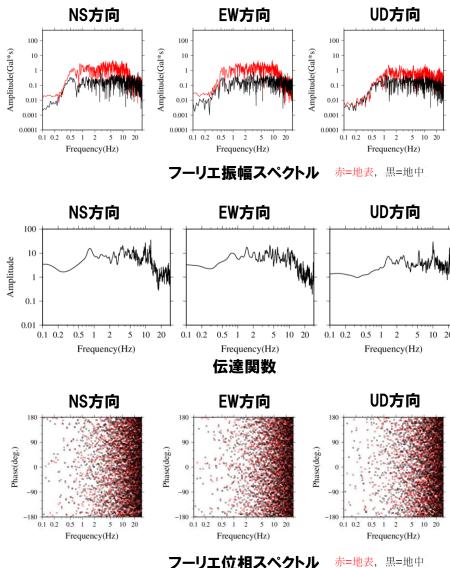

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

特異な位相特徴の確認(収集した観測記録の確認)

- ○収集した8つの観測記録について、加速度時刻歴波形および速度時刻歴波形の形状、応答スペクトルおよびフーリエ振幅スペクトル の形状、フーリエ位相スペクトルの分布を確認する。
- ○上記の確認項目について、以下の特徴の有無を確認する。
 - 加速度時刻歴波形および速度時刻歴波形の形状について、振幅の大きなパルス波や主要動と同程度の振幅の後続波の有無
 - 応答スペクトルおよびフーリエ振幅スペクトルについて、特定の周波数における大きなピークの有無
 - フーリエ位相スペクトルについて、特定の位相や周波数への偏りの有無
- ○上記の特徴が複数の項目で確認された場合は、全ての確認項目を総合的に検討し、特異な位相特徴を持つ記録を判断する。
- ○なお、確認は、各観測点の地中記録を用いることとし、応答スペクトル、フーリエ振幅スペクトルおよびフーリエ位相スペクトルには、参 考として地表記録も重ねて示す。
- ○また. 観測記録に含まれる地震動特性を用いて特異な位相特徴の確認等をするため. 地中観測記録から仮定条件を用いて上部地 盤の影響を取り除くはぎとり解析をせずに、地中観測記録をそのまま用いる。

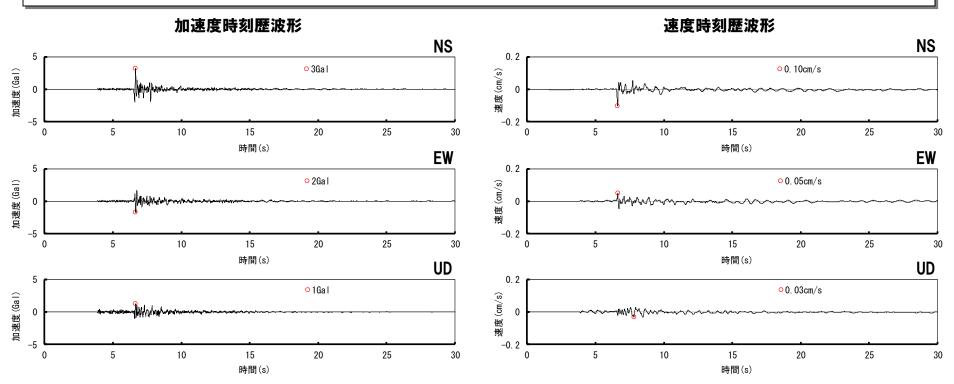

模擬地震波の検討にあたって考慮すべき観測記録の選定

2001/11/27後志地方の地震(M3.8)SBSH03赤井川の観測記録

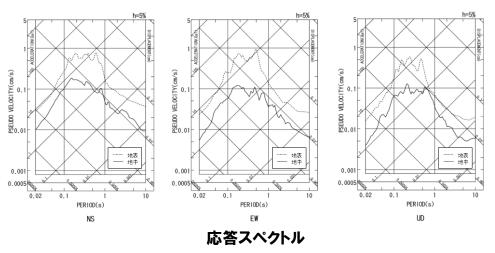


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

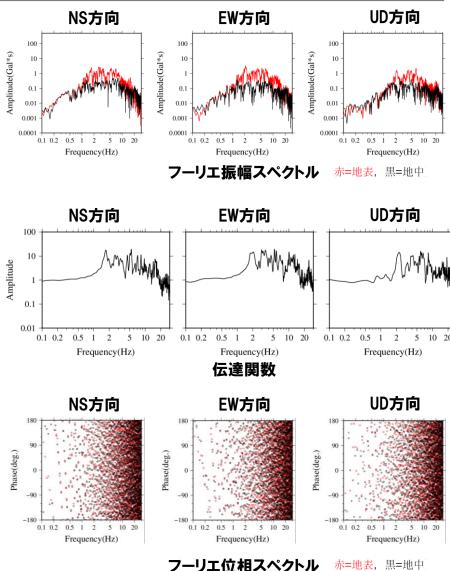
2001/11/27後志地方の地震(M3.8)SBSH03赤井川の観測記録



- ○時刻歴波形にパルス波や主要動と同程度の振幅の大き い後続波などの特徴的な形状の波形が見られない。
- ○応答スペクトル, フーリエ振幅スペクトルに特徴的な形状は見られない。また, フーリエ位相スペクトルに特定の位相, 周波数の偏りが見られない。

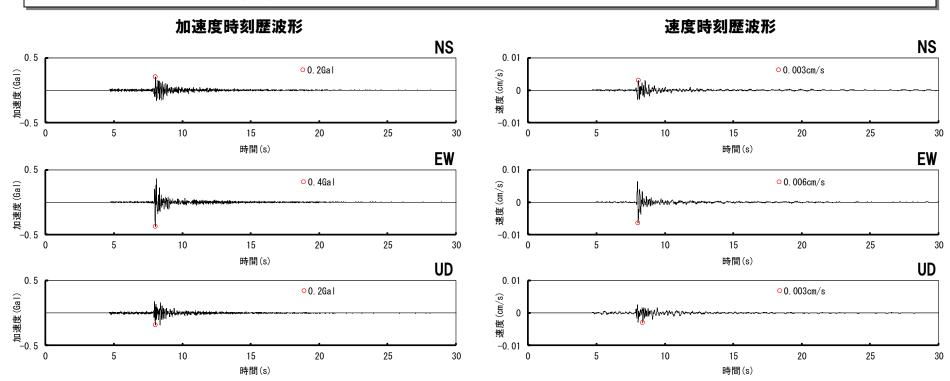

模擬地震波の検討にあたって考慮すべき観測記録の選定

2001/11/27後志地方の地震(M3.8)SBSH05倶知安の観測記録

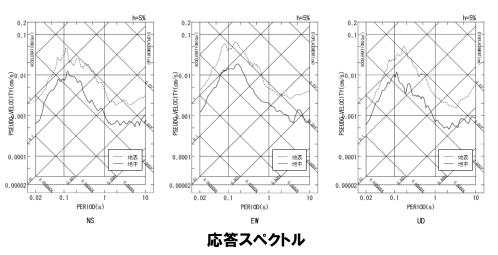


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

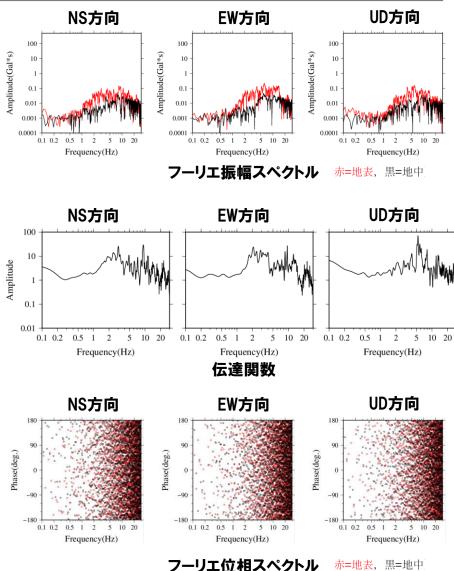
2001/11/27後志地方の地震(M3.8)SBSH05倶知安の観測記録



- ○時刻歴波形にパルス波や主要動と同程度の振幅の大き い後続波などの特徴的な形状の波形が見られない。
- ○応答スペクトル, フーリエ振幅スペクトルに特徴的な形状は見られない。また, フーリエ位相スペクトルに特定の位相, 周波数の偏りが見られない。

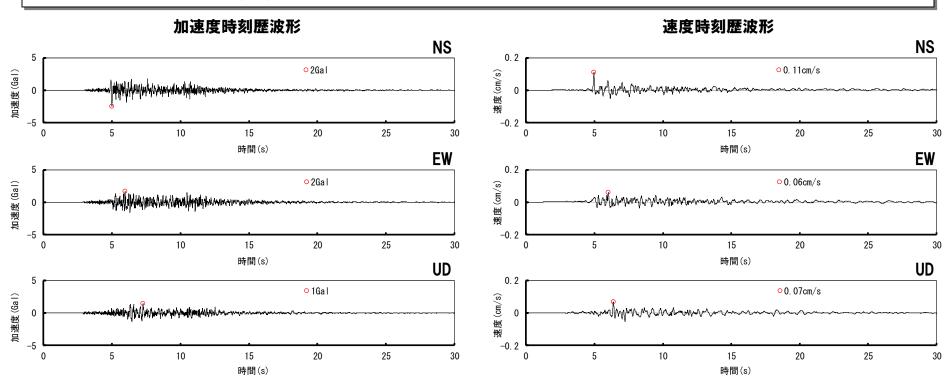

模擬地震波の検討にあたって考慮すべき観測記録の選定

2010/8/14後志地方の地震(M2.5)SBSH05倶知安の観測記録

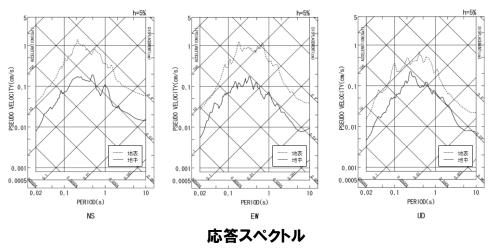


模擬地震波の検討にあたって考慮すべき観測記録の選定

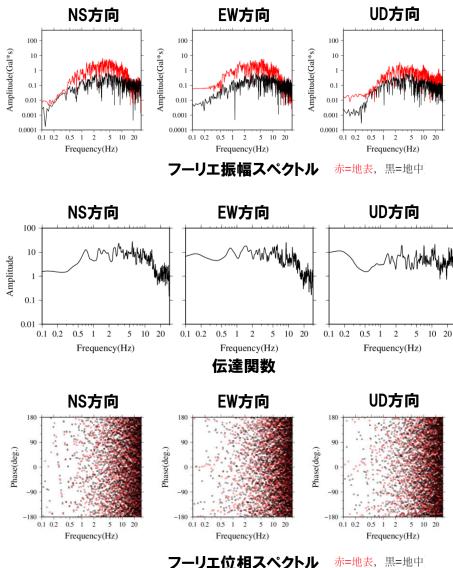
2010/8/14後志地方の地震(M2.5)SBSH05倶知安の観測記録



- ○時刻歴波形にパルス波や主要動と同程度の振幅の大き い後続波などの特徴的な形状の波形が見られない。
- ○応答スペクトル、フーリエ振幅スペクトルに特徴的な形状 は見られない。また、フーリエ位相スペクトルに特定の位 相、周波数の偏りが見られない。

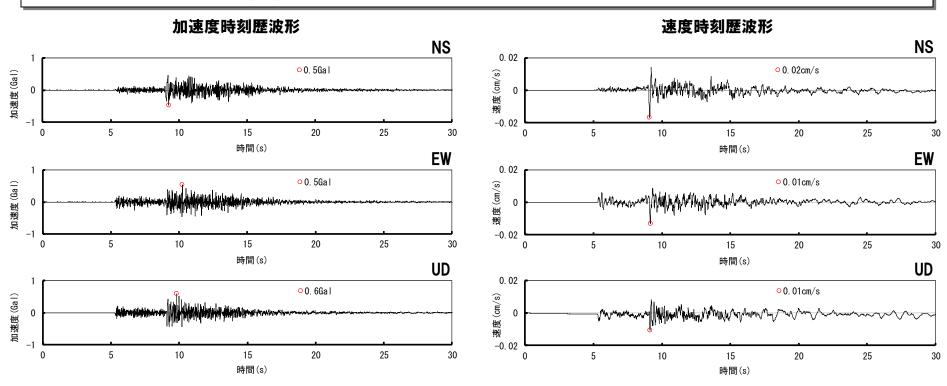

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

2017/8/13後志地方の地震(M3.5)SBSH03赤井川の観測記録

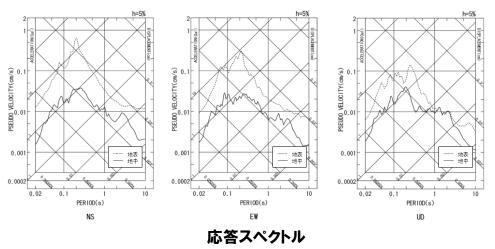


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

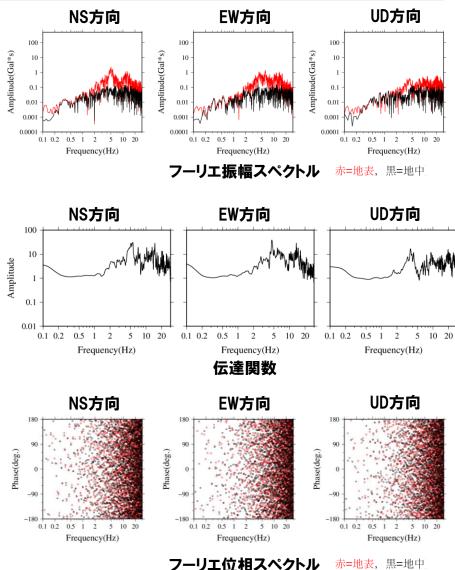
2017/8/13後志地方の地震(M3.5)SBSH03赤井川の観測記録



- ○時刻歴波形にパルス波や主要動と同程度の振幅の大き い後続波などの特徴的な形状の波形が見られない。
- ○応答スペクトル, フーリエ振幅スペクトルに特徴的な形状は見られない。また, フーリエ位相スペクトルに特定の位相, 周波数の偏りが見られない。

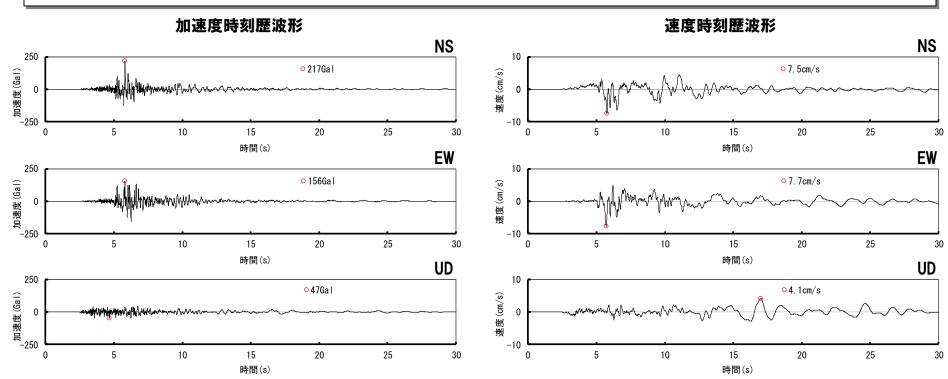

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

2017/8/13後志地方の地震(M3.5)SBSH04共和の観測記録

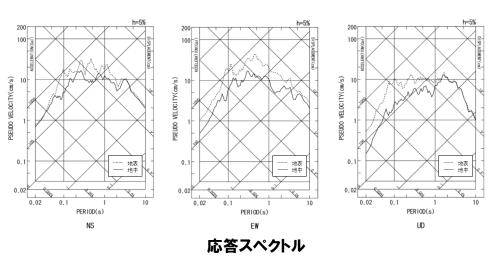


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

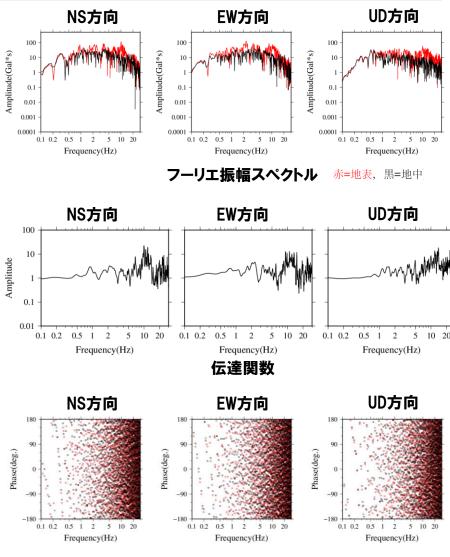
2017/8/13後志地方の地震(M3.5)SBSH04共和の観測記録



- ○時刻歴波形にパルス波や主要動と同程度の振幅の大き い後続波などの特徴的な形状の波形が見られない。
- ○応答スペクトル, フーリエ振幅スペクトルに特徴的な形状は見られない。また, フーリエ位相スペクトルに特定の位相, 周波数の偏りが見られない。

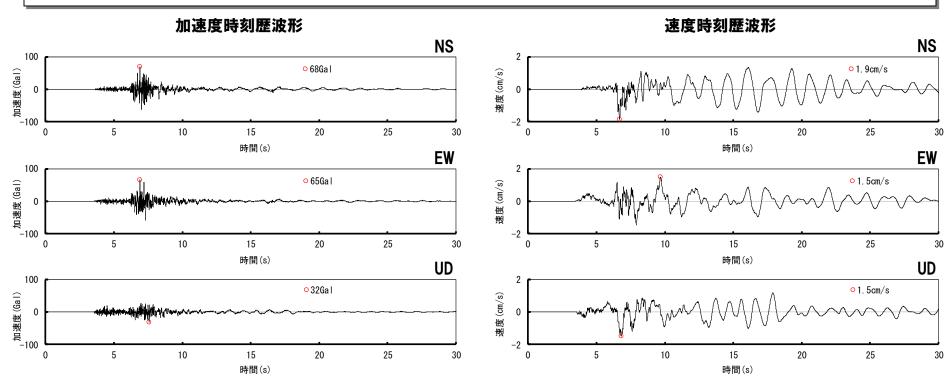

模擬地震波の検討にあたって考慮すべき観測記録の選定

2014/7/8胆振地方の地震(M5.6)IBUH05白老の観測記録

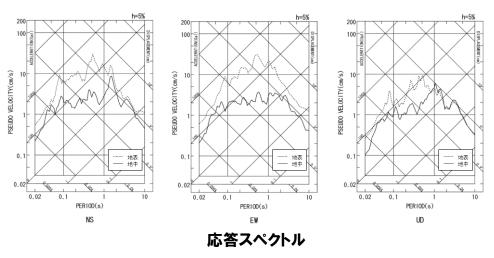


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

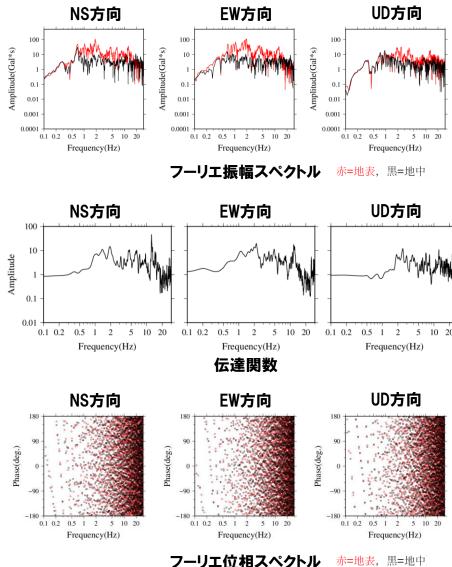
2014/7/8胆振地方の地震(M5.6)IBUH05白老の観測記録


○時刻歴波形のうち、NS方向の6秒~7秒程度にピークが見られるものの、応答スペクトル、フーリエ振幅スペクトルには特徴的な形状が見られないこと、フーリエ位相スペクトルにも特定の位相、周波数に偏りが見られないことから、位相特徴に影響を与えるような波形ではないと考えられる。

フーリエ位相スペクトル 赤=地表, 黒=地中

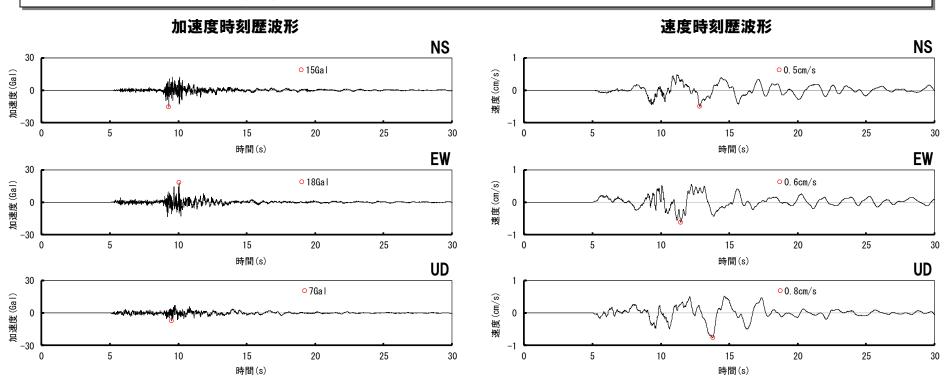

模擬地震波の検討にあたって考慮すべき観測記録の選定

2014/7/8胆振地方の地震(M5.6)IBUH07大滝の観測記録

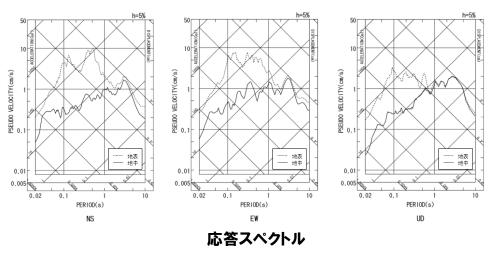


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

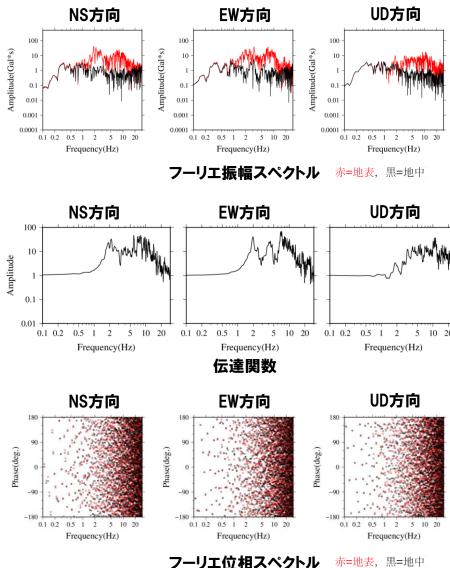
2014/7/8胆振地方の地震(M5.6)IBUH07大滝の観測記録



- ○速度時刻歴波形には、振幅の大きい後続波が見られるが、加速度時刻歴波形には同様の傾向が見られないことから、位相特徴に影響を与えるような波形ではないと考えられる。
- ○応答スペクトル, フーリエ振幅スペクトルに特徴的な形状は見られない。また, フーリエ位相スペクトルに特定の位相, 周波数の偏りが見られない。


② 模擬地震波の検討にあたって考慮すべき観測記録の選定

2014/7/8胆振地方の地震(M5.6)SBSH08喜茂別の観測記録



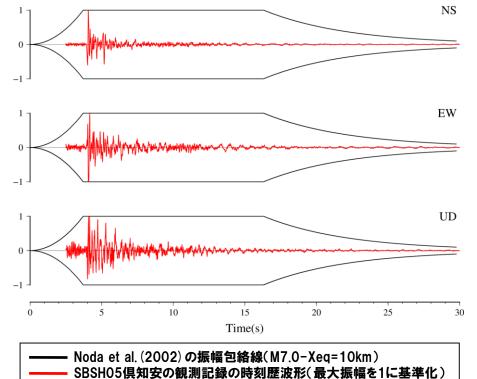
模擬地震波の検討にあたって考慮すべき観測記録の選定

2014/7/8胆振地方の地震(M5.6)SBSH08喜茂別の観測記録

- ○速度時刻歴波形には、振幅の大きい後続波が見られる が、加速度時刻歴波形には同様の傾向が見られないこと から. 位相特徴に影響を与えるような波形ではないと考え られる。
- ○応答スペクトル, フーリエ振幅スペクトルに特徴的な形状 は見られない。また、フーリエ位相スペクトルに特定の位 相. 周波数の偏りが見られない。

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

一部加筆修正(R4.5.13審査会合資料)

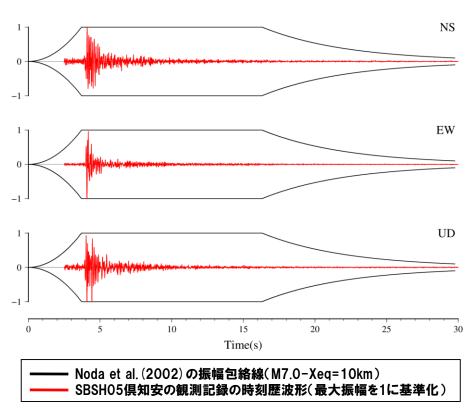

特異な位相特徴の確認(収集した観測記録の強震部の継続時間の確認)

- ○加速度時刻歴波形の最大振幅を基準化し、強震部の継続時間について確認する。
- ○比較のため、図に乱数位相を用いた模擬地震波の振幅包絡線の設定で用いたNoda et al. (2002) に基づく振幅包絡線(M7.0, Xeq=10km)を重ね描く。

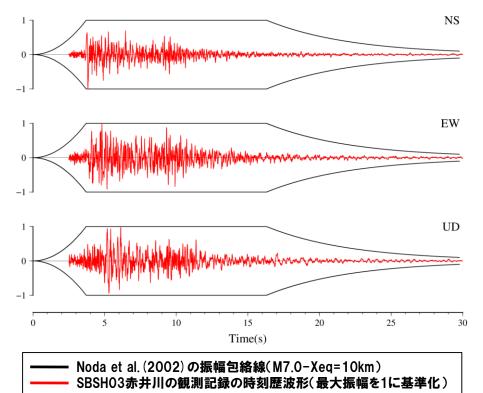
2001/11/27後志地方の地震(M3.8)SBSH03赤井川の観測記録

NS **EW** UD 10 15 20 25 30 Time(s) Noda et al. (2002)の振幅包絡線(M7.0-Xeg=10km) SBSH03赤井川の観測記録の時刻歴波形(最大振幅を1に基準化)

2001/11/27後志地方の地震(M3.8)SBSH05倶知安の観測記録



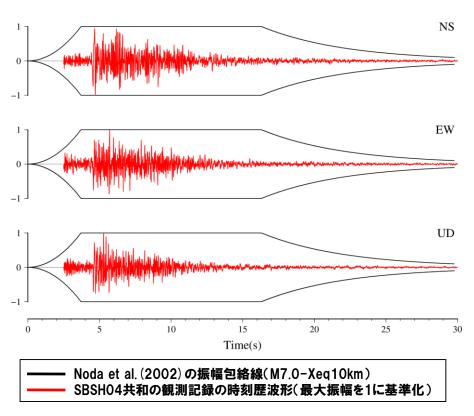
② 模擬地震波の検討にあたって考慮すべき観測記録の選定


一部加筆修正 (R4.5.13審査会合資料)

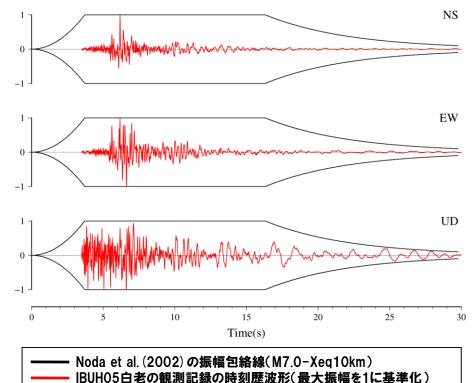
特異な位相特徴の確認(収集した観測記録の確認および強震部の継続時間の確認)

2010/8/14後志地方の地震(M2.5)SBSH05倶知安の観測記録

2017/8/13後志地方の地震(M3.5)SBSH03赤井川の観測記録



② 模擬地震波の検討にあたって考慮すべき観測記録の選定


一部加筆修正(R4.5.13審査会合資料)

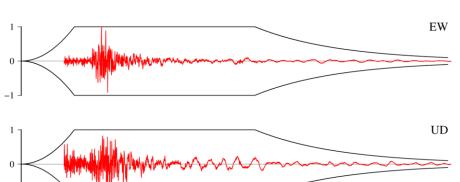
特異な位相特徴の確認(収集した観測記録の確認および強震部の継続時間の確認)

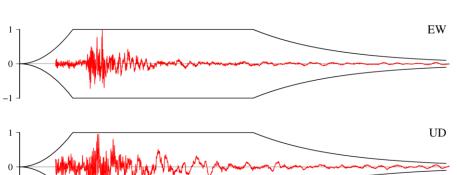
2014/7/8胆振地方の地震(M5.6)IBUH05白老の観測記録

模擬地震波の検討にあたって考慮すべき観測記録の選定

一部加筆修正(R4.5.13審査会合資料)

89


NS


特異な位相特徴の確認(収集した観測記録の確認および強震部の継続時間の確認)

NS -1

25

2014/7/8胆振地方の地震(M5.6)SBSH08喜茂別の観測記録

Noda et al. (2002) の振幅包絡線(M7.0-Xeg10km) IBUH07大滝の観測記録の時刻歴波形(最大振幅を1に基準化)

15

Time(s)

20

10

Noda et al. (2002)の振幅包絡線(M7.0-Xeq10km) SBSH08喜茂別の観測記録の時刻歴波形(最大振幅を1に基準化)

15

Time(s)

20

25

10

○収集した8つの観測記録の加速度時刻歴波形は、規模の小さい地震の観測記録であることから、Noda et al. (2002) に基づき 「M7.0-Xeq10km」から設定した強震部の継続時間よりも有意に短い。

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

特異な位相特徴の確認(まとめ)

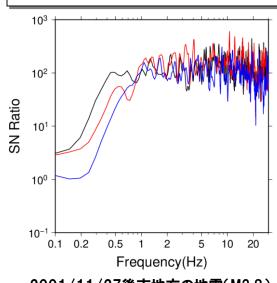
90

- 〇収集した8つの観測記録の時刻歴波形は、パルス波や主要動と同程度の振幅の大きい後続波などの特徴的な形状の波形が見られない。
- ○また, 応答スペクトル, フーリエ振幅スペクトルに特徴的な形状は見られず, フーリエ位相スペクトルにも特定の位相, 周波数の偏りが見られない。
- ○なお、一部の観測記録には、時刻歴波形にピークや後続波が見られるものの、いずれの記録においても応答スペクトル、フーリエ振幅スペクトルには特徴的な形状が見られないことなどから、位相特徴に影響を与えるような波形ではないと考えられる。
- ○収集した8つの観測記録の加速度時刻歴波形は,規模の小さい地震の観測記録であることから,Noda et al. (2002) に基づき「M7.0-Xeq10km」から設定した強震部の継続時間よりも有意に短い。

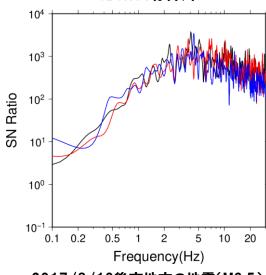
○以上を踏まえ、収集した8つの観測記録については、特異な位相特徴はないものと判断した。

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

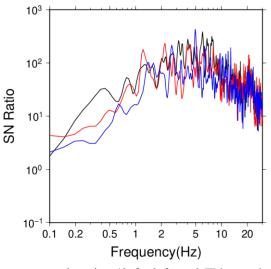
観測記録の確認(地震規模, 観測レベルの確認)

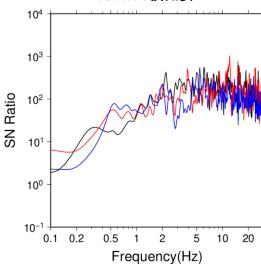

- 〇収集した8つの観測記録について、観測記録の地震規模および観測レベル(最大加速度、SN比)より模擬地震波の検討に用いることに適切な記録であるか確認する。
- 〇収集した8つの観測記録の中で最も地震規模の大きい地震は、2014/7/8胆振地方の地震(M5.6)となる。それ以外の地震は、地震規模がM2.5~M3.8と比較的地震規模の小さい地震となっている。
- ○また, 収集した8つの観測記録のうち, 地震規模の小さい2001/11/27後志地方の地震(M3.8), 2010/8/14後志地方の地震 (M2.5)および2017/8/13後志地方の地震(M3.5)の観測記録は, 観測された最大加速度が小さく, SN比も低周波数側で10¹以下となっている。

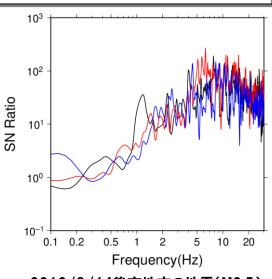
No	地震発生時刻	震央地名	規模	地震 規模 (M)		則点名	観測記録の 最大加速度 (Gal)	SN比		
1	2001/11/27 13:28:31	後志地方	3.8	小	SBSH03	赤井川	3	小		
1	2001/11/27 13.20.31	及心心力	5.0	0.0	0.0	,,,	SBSH05	倶知安	3	小
2	2010/08/14 09:11:00	後志地方	2.5	小	SBSH05	倶知安	0.4	小		
3	2017/08/13 19:40:18	後志地方	3.5	小	SBSH03	赤井川	2	小		
	2017/00/13 13.40.10	及心心力	5.5	٠,١,	SBSH04	共和	0.5	小		
					IBUH05	白老	217	適切		
4	2014/07/08 18:05:24	胆振地方	5.6	適切	IBUH07	大滝	68	適切		
					SBSH08	喜茂別	18	適切		


収集した観測記録の地震規模および観測レベルの確認

模擬地震波の検討にあたって考慮すべき観測記録の選定

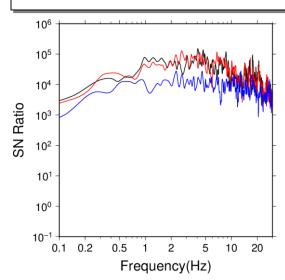

観測記録の確認(SN比の確認)


2001/11/27後志地方の地震(M3.8) SBSH03赤井川

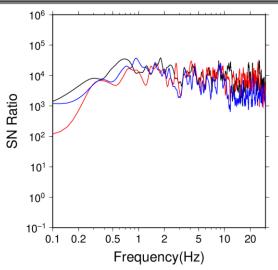

2017/8/13後志地方の地震(M3.5) SBSH03赤井川

2001/11/27後志地方の地震(M3.8) SBSH05倶知安

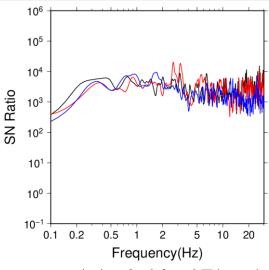
2017/8/13後志地方の地震(M3.5) SBSH04共和



2010/8/14後志地方の地震(M2.5) SBSH05倶知安

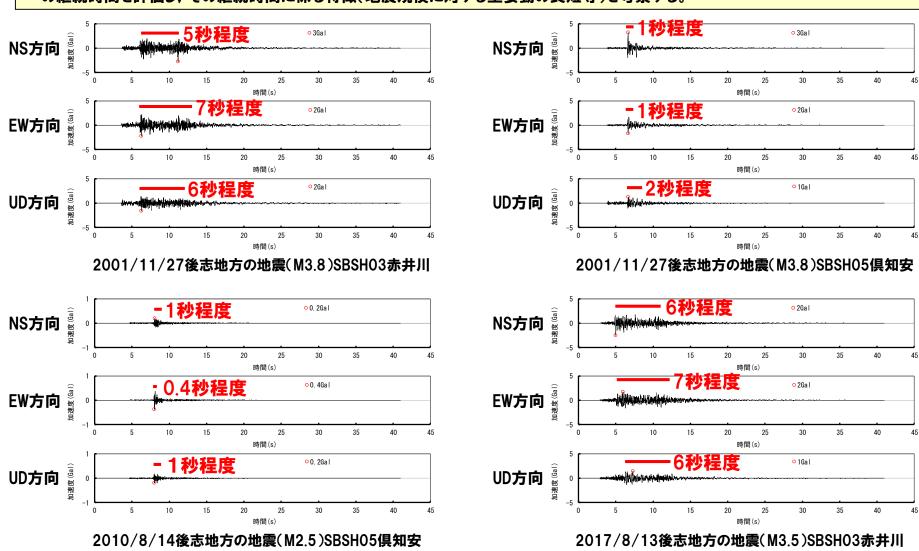


模擬地震波の検討にあたって考慮すべき観測記録の選定

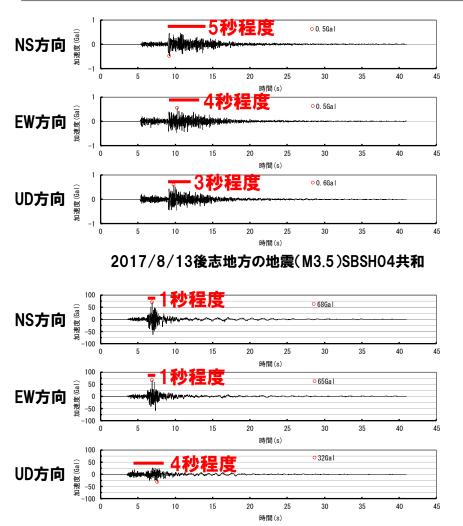

観測記録の確認(SN比の確認)

2014/7/8胆振地方の地震(M5.6) IBUH05白老

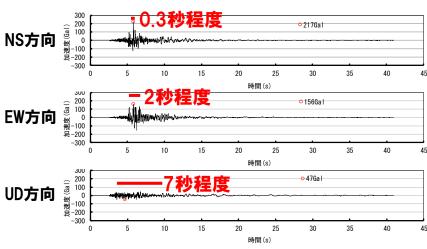
2014/7/8胆振地方の地震(M5.6) IBUH07大滝


2014/7/8胆振地方の地震(M5.6) SBSH08喜茂別

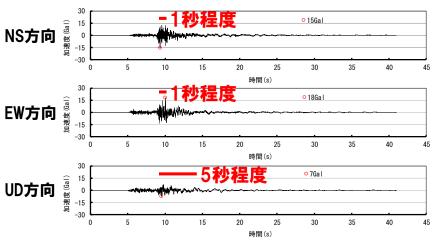
② 模擬地震波の検討にあたって考慮すべき観測記録の選定


観測記録の確認(観測記録の継続時間に係る特徴に関する考察)

○収集した8つの観測記録について、観測記録の比較的振幅の大きい波(最大加速度値の0.5倍以上の振幅、以下、主要動という。) の継続時間を評価し、その継続時間に係る特徴(地震規模に対する主要動の長短等)を考察する。

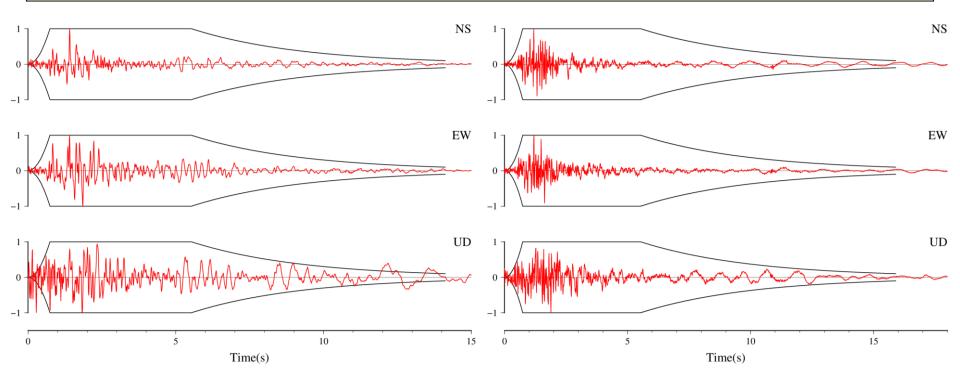


模擬地震波の検討にあたって考慮すべき観測記録の選定


観測記録の確認(観測記録の継続時間に係る特徴に関する考察)

2014/7/8胆振地方の地震(M5.6)IBUH07大滝

2014/7/8胆振地方の地震(M5.6)IBUH05白老

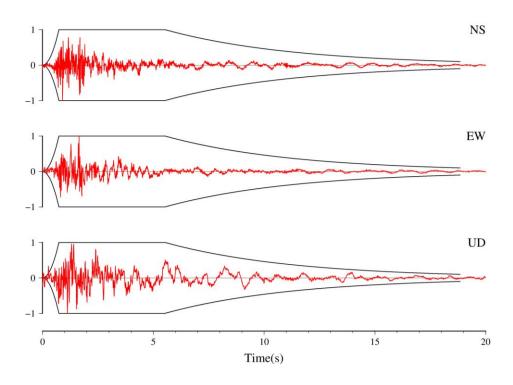


2014/7/8胆振地方の地震(M5.6)SBSH08喜茂別

模擬地震波の検討にあたって考慮すべき観測記録の選定

観測記録の確認(観測記録の継続時間に係る特徴に関する考察)

- ○収集した観測記録について、加速度時刻歴波形の最大振幅を基準化し、Noda et al. (2002) に基づく振幅包絡線を重ね描き、観測 記録の強震部の継続時間に係る特徴を考察する。
- ○なお、収集した8つの観測記録のうち、地震規模がNoda et al. (2002)の適用範囲内である2014/7/8胆振地方の地震(M5.6)の 観測記録を検討対象とする。



2014/7/8胆振地方の地震(M5.6)IBUH05白老の観測記録

2014/7/8胆振地方の地震(M5.6)IBUH07大滝の観測記録

模擬地震波の検討にあたって考慮すべき観測記録の選定

観測記録の確認(観測記録の継続時間に係る特徴に関する考察)

2014/7/8胆振地方の地震(M5.6)SBSH08喜茂別の観測記録

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

観測記録の確認(観測記録の継続時間に係る特徴に関する考察)

- ○主要動の継続時間の評価より、2001/11/27後志地方の地震(M3.8)SBSH03赤井川、2017/8/13後志地方の地震(M3.5) SBSH03赤井川およびSBSH04共和の観測記録については、地震規模が小さいものの、地震規模が大きい2014/7/8胆振地方の 地震(M5.6)の観測記録と比較して、主要動の継続時間がやや長くなっている。
- ○一方、地震規模が小さい2001/11/27後志地方の地震(M3.8)SBSH05倶知安および2010/8/14後志地方の地震(M2.5) SBSH05倶知安の観測記録については、地震規模が大きい2014/7/8胆振地方の地震(M5.6)の観測記録と比較して、主要動の 継続時間がやや短くなっている。
- ONoda et al. (2002)に基づく振幅包絡線の重ね描きより、地震規模の大きい2014/7/8胆振地方の地震(M5.6)の観測記録が得 られている観測点(IBUH05白老、IBUH06大滝、SBSH08喜茂別)については、Noda et al. (2002)に基づく振幅包絡線と比較して、 強震部の継続時間が短くなっている。

			地震		観測記録の	主要	更動の継続問	寺間
No	地震発生時刻	震央地名	規模	観測点名	最大加速度		(秒)	
			(M)		(Gal)	NS方向	EW方向	UD方向
1	2001/11/27 13:28:31	後志地方	3.8	SBSH03 赤井川	3	5	7	6
1	2001/11/27 13.20.31	及心地		SBSH05 倶知安	3	1	1	2
2	2010/08/14 09:11:00	後志地方	2.5	SBSH05 倶知安	0.4	1	0.4	1
3	2017/08/13 19:40:18	後志地方	3.5	SBSH03 赤井川	2	6	7	6
3	2017/00/13 19.40.10	1夕心地力	3.5	SBSH04 共和	0.5	5	4	3
				IBUH05 白老	217	0.3	2	7
4	2014/07/08 18:05:24	胆振地方	5.6	IBUH07 大滝	68	1	1	4
				SBSH08 喜茂別	18	1	1	5

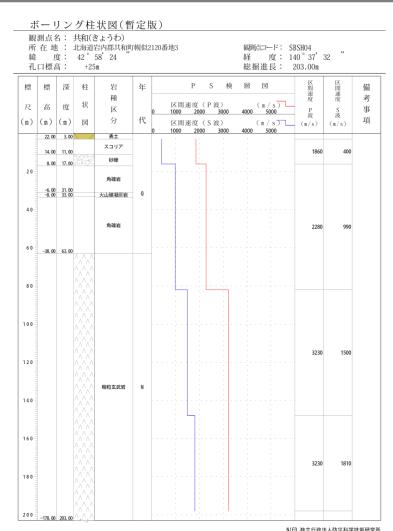
② 模擬地震波の検討にあたって考慮すべき観測記録の選定

敷地と他機関の観測点との地盤条件の確認

- ○観測記録を収集した6観測点を対象に地震計設置位置のS波速度より地盤条件の類似性を確認する。
- ○観測記録を収集した6観測点のうち、4観測点(SBSH04共和、SBSH05倶知安、SBSH08喜茂別、IBUH07大滝)については、地震基盤相当面のS波速度(2400m/s)より小さいが、比較的硬質な岩盤中に地震計が設置されている。
- ○観測記録を収集した6観測点のうち、地震計設置位置のS波速度が大きい4観測点(SBSH04共和、SBSH05倶知安、SBSH08喜茂別、IBUH07大滝)については、柱状図等を用いて、以下の観点から総合的に地盤条件の類似性を確認する。
 - ・ 地震計設置位置以浅が比較的硬質な岩盤であること
 - ・ 構成地質が敷地と類似していること

	観測点名		S波速度V	/s (m/s)
	既炽黑石		地表	地中
SBSH03	KiK-net	赤井川	180	730
SBSH04	KiK-net	共和	400	1,810
SBSH05	KiK-net	倶知安	230	1,730
SBSH08	KiK-net	喜茂別	200	1,430
IBUH05	KiK-net	白老	170	790
IBUH07	KiK-net	大滝	400	1,330

模擬地震波の検討にあたって考慮すべき観測記録の選定


敷地と他機関の観測点との地盤条件の確認(SBSH04共和)

標高	層厚	密度 ρ	S波速度	P波速度	Q値	
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	Q/IE	< 解放基盤表面
0~-56	56	2.1	1175	2660	100	─
-56~-250	194	2.2	1935	3230	100	
-250~-430	180	1.9	1350	2700	100	
-430~-990	560	1.9	1560	3100	100	✓ 小哥甘松和火
-990~-2000	1010	2.5	2400	4500	100	<□ 地震基盤相当
-2000~	_	2.8	3500	6400	150	

面

敷地の地下構造モデル

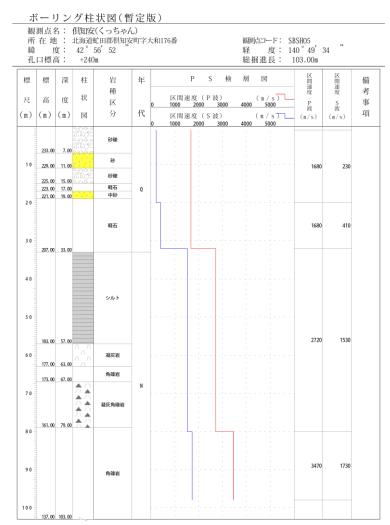
- 〇地震計設置位置のS波速度は、1810m/sとなっており、比較的硬質 な岩盤中に地震計が設置されている。
- ○地震計設置位置以浅の速度構造は、400m/s~1500m/sとなって おり. 表層に若干S波速度が遅い層が存在するものの. 泊発電所と類 似した速度構造であると考えられる。
- ○また, 泊発電所敷地の地質は. 主として新第三系中新統の神恵内層 からなり、主に凝灰角礫岩及び凝灰岩等が分布しているのに対し、 SBSH04共和は、角礫岩等が主体となっており、構成地質も類似して いると考えられる。

100

Copyright (c) National Research Institute for Earth Science and Disaster Prevention. All rights Reserved

模擬地震波の検討にあたって考慮すべき観測記録の選定

敷地と他機関の観測点との地盤条件の確認(SBSH05倶知安)


						•
標高	層厚	密度 ρ	S波速度	P波速度	Q値	
(m)	(m)	(g/cm ³)	V s (m/s)	Vp (m/s)	ů Č	< 解放基盤表
0~-56	56	2.1	1175	2660	100	─
-56~-250	194	2.2	1935	3230	100	
-250~-430	180	1.9	1350	2700	100	
-430~-990	560	1.9	1560	3100	100	< 地震基盤材
-990~-2000	1010	2.5	2400	4500	100	▽ 地辰埜強作
-2000~	_	2.8	3500	6400	150	

表面

相当面

敷地の地下構造モデル

- ○地震計設置位置のS波速度は、1730m/sとなっており、比較的硬質 な岩盤中に地震計が設置されている。
- ○地震計設置位置以浅の速度構造は、230m/s~1530m/sとなって いる。泊発電所と比較して. 速度構造の一部に類似性が見られるも のの、表層部分について、差異も見られる。
- ○また、泊発電所敷地の地質は、主として新第三系中新統の神恵内層 からなり、主に凝灰角礫岩及び凝灰岩等が分布しているのに対し、 SBSH05倶知安は、凝灰角礫岩等が主体となっているものの、一部に シルトおよび軽石等も堆積しており、構成地質に差異も見られる。

Copyright (c) National Research Institute for Earth Science and Disaster Prevention, All rights Reserved.

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

敷地と他機関の観測点との地盤条件の確認(SBSH08喜茂別)

-		_				
	Q値	P波速度	S波速度	密度 ρ	層厚	標高
✓ 解放基		Vp (m/s)	V s (m/s)	(g/cm ³)	(m)	(m)
N 件队型 】	100	2660	1175	2.1	56	0~-56
	100	3230	1935	2.2	194	-56~-250
	100	2700	1350	1.9	180	-250~-430
✓ 地震基	100	3100	1560	1.9	560	-430~-990
│ □ 心辰空	100	4500	2400	2.5	1010	-990~-2000
	150	6400	3500	2.8	_	-2000~

解放基盤表面

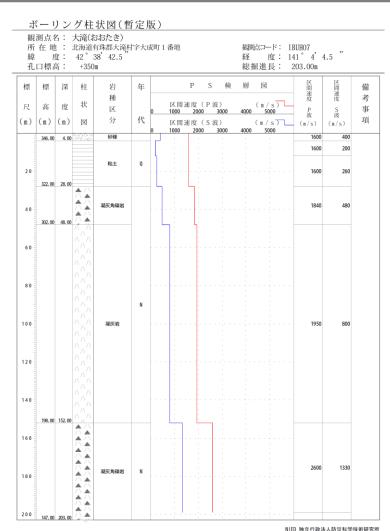
地震基盤相当面

敷地の地下構造モデル

- ○地震計設置位置のS波速度は、1430m/sとなっており、比較的硬質 な岩盤中に地震計が設置されている。
- ○地震計設置位置以浅の速度構造は、200m/s~630m/sとなっており、泊発電所と比較し速度構造に差異が見られる。
- ○また, 泊発電所敷地の地質は, 主として新第三系中新統の神恵内層からなり, 主に凝灰角礫岩及び凝灰岩等が分布しているのに対し, SBSH08喜茂別は, 凝灰角礫岩等が主体となっているものの, 一部に砂礫および火山灰等も堆積しており, 構成地質に差異も見られる。

ボーリング柱状図(暫定版) 観測点名: 喜茂別(きもべつ) 所 在 地 : 北海道虻田郡喜茂別町字鈴川42-9 度: 42°45'56 経 度: 140°58'49 孔口標高: 総掘進長: 103.00m P S 検 層図 標 深 岩 備 種 考 区間速度(P波) 尺 高 度 X 2000 3000 5000 分 (m) (m) (m) (n/s)粘土混り砂礫 360 200 272.00 13.00 1590 330 火山灰 266,00 19.00 3 0 254.00 31.00 凝灰岩 1590 50 228.00 57.00 226.00 59.00 角碟岩 凝灰角碟岩 218,00 67,00 4 70 214.00 71.00 安山岩 3250 8 0 204.00 81.00 凝灰岩 200.00 85.00 安山岩 9 0 194. 70 90. 30 187.00 98.00 100

> NIED 独立行政法人防災科学技術研究所 Copyright (c) National Research Institute for Earth Science and Disaster Prevention, All rights Reserved.


模擬地震波の検討にあたって考慮すべき観測記録の選定

敷地と他機関の観測点との地盤条件の確認(IBUH07大滝)

	Q値	P波速度 Vp (m/s)	S波速度 Vs (m/s)	密度 p	層厚 (m)	標高 (m)
◁ 解放基盤表面	100	2660	1175	2.1	56	0~-56
	100	3230	1935	2.2	194	-56~-250
	100	2700	1350	1.9	180	-250~-430
	100	3100	1560	1.9	560	-430~-990
◁ 地震基盤相当面	100	4500	2400	2.5	1010	-990~-2000
	150	6400	3500	2.8	-	-2000~

敷地の地下構造モデル

- 〇地震計設置位置のS波速度は、1330m/sとなっており、比較的硬質 な岩盤中に地震計が設置されている。
- ○地震計設置位置以浅の速度構造は、200m/s~800m/sとなってお り、泊発電所と比較し速度構造に差異が見られる。
- ○また、泊発電所敷地の地質は、主として新第三系中新統の神恵内層 からなり、主に凝灰角礫岩及び凝灰岩等が分布しているのに対し、 IBUH07大滝は、凝灰角礫岩等が主体となっているものの表層部分に 粘土等が堆積しており、構成地質に差異も見られる。

103

Copyright (c) National Research Institute for Earth Science and Disaster Prevention, All rights Reserved

② 模擬地震波の検討にあたって考慮すべき観測記録の選定

観測位相を用いた模擬地震波の検討にあたって考慮すべき観測記録の選定

○これまでの検討結果を踏まえ、収集した観測記録について、特異な位相特徴の有無を確認するとともに、観測記録の信頼性、地盤 条件の類似性の確認結果を総合的に判断し、模擬地震波の検討にあたって考慮すべき観測記録として選定する。

【特異な位相特徴の有無】

・ 収集した8つの観測記録が特異な位相特徴を有していないことから、観測位相を用いた模擬地震波の検討に用いる必要がある 観測記録はないものと考えられる。

【観測記録の信頼性および地盤条件の類似性】

収集した8つの観測記録について、観測記録の信頼性および泊発電所との地盤条件の類似性の両方を満足する観測記録がないことから、検討に用いることができる適切な観測記録はないものと考えられる。

【観測記録の選定結果】

- ○模擬地震波の検討にあたって考慮すべき観測記録は得られていない。
- ⇒実観測記録の位相を用いた手法による検討を進めた結果,模擬地震波の検討にあたって考慮すべき観測記録は得られなかったこと から,以降の検討は,乱数位相を用いた手法によって作成した模擬地震波を用いる。
- ⇒なお、 念のため、 観測記録を用いた模擬地震波を算定し、 乱数位相を用いた模擬地震波と比較した結果、 標準応答スペクトルを考慮した地震動評価として乱数位相を用いた模擬地震波を設定することが妥当であることを確認している。 (参考資料8. 参照)

								検討項目										
				特異な	観測記録の信頼性 地盤条件の類似性													
No	地震発生時刻	震央地名	観測点名	位相特徴		徴 地震規模				小面扫描		観測記	記録の		継続	地震計	地震計設置	
								最大加	1速度	SN比		設置位置	位置以浅	構成地質				
				の有無	の有無 (M) (f	(G	al)		時間	S波速度	速度構造							
1	2001/11/27 13:28:31	後志地方	SBSH03 赤井川	無	3.8	小	3	小	小	長い	不適	_	_					
2	2001/11/27 13.26.31	1女心地刀	SBSH05 倶知安	無	3.0	小	3	小	小	やや短い	適切	一部類似性あり	一部類似性あり					
3	2010/08/14 09:11:00	後志地方	SBSH05 倶知安	無	2.5	小	0.4	小	小	やや短い	適切	一部類似性あり	一部類似性あり					
4	2017/08/13 19:40:18	後志地方	SBSH03 赤井川	無	3.5	小	2	小	小	長い	不適	_	_					
5	2017/00/13 13:40:10	及心心力	SBSH04 共和	無	5.5	小	0.5	小	小	長い	適切	類似性あり	類似性あり					
6			IBUH05 白老	無		適切	217	適切	適切	やや短い	不適	_	_					
7	2014/07/08 18:05:24	胆振地方	IBUH07 大滝	無	5.6	適切	68	適切	適切	やや短い	適切	差異あり	一部類似性あり					
8		SBSH08 喜茂別 無		適切	18	適切	適切	やや短い	適切	差異あり	一部類似性あり							

余白

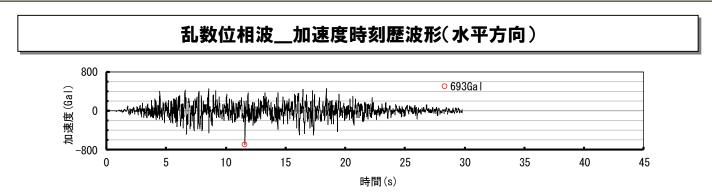
3. 模擬地震波の作成

3.3 解放基盤表面における地震動の設定

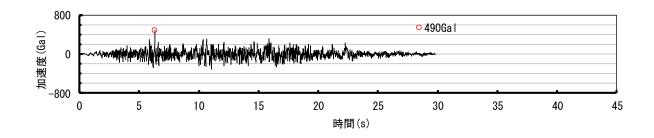
再揭(R4.5.13審査会合資料)

○地震基盤相当面における模擬地震波を用いて、1次元波動論により、標準応答スペクトルを考慮した地震動評価に用いる地下構造 モデルの地震基盤相当面から解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における標準応答スペクトルを考慮 した地震動を設定。

標高 (m)	層厚 (m)	密度 ρ (g/cm³)	S波速度 Vs (m/s)	P波速度 Vp (m/s)	減衰定数 (%)	▽解放基盤表面
0~-56	56	2.1	1175	2660	0.5	1
-56~-250	194	2.2	1935	3230	0.5	1次元波動論による 地震波の伝播特性の反映
-250~-430	180	1.9	1350	2700	0.5	心辰叔Ⅵ仏頂付任Ⅵ汉吹
-430~-990	560	1.9	1560	3100	0.5	▽地震基盤相当面
-990~-2000	1010	2.5	2400	4500	0.5	
-2000~	_	2.8	3500	6400	0.33	


標準応答スペクトルを考慮した地震動評価に用いる地下構造モデル

3. 模擬地震波の作成


3.3 解放基盤表面における地震動の設定

○「3.1 乱数位相を用いた模擬地震波の作成」で検討した模擬地震波について、「2. 地下構造モデルの設定」で検討した地下構 造モデルを用いて、解放基盤表面での模擬地震波を評価する。

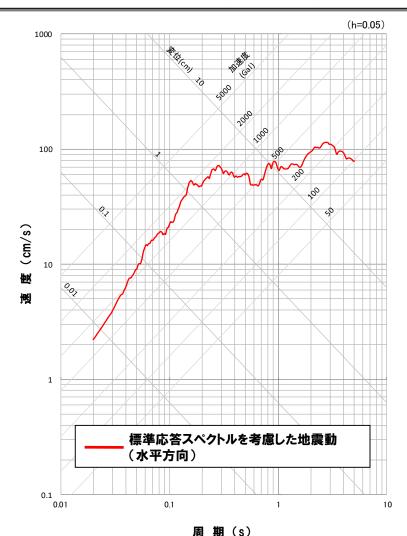
107

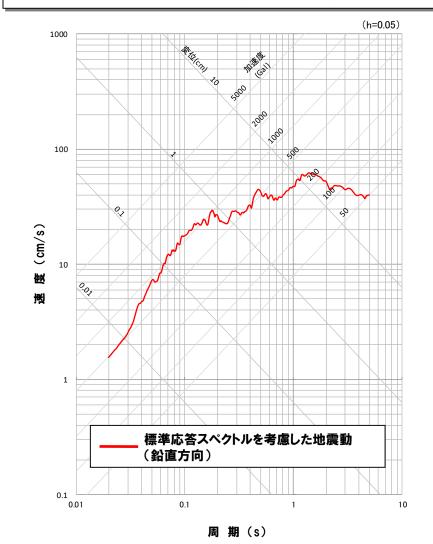
乱数位相波__加速度時刻歷波形(鉛直方向)

模擬地震波	最大加速度(Gal)
水平方向	693
鉛直方向	490

3. 模擬地震波の作成

3.3 解放基盤表面における地震動の設定


一部加筆修正 (R4.5.13審査会合資料)


108

- ○標準応答スペクトルを考慮した地震動評価としては、乱数位相を用いた模擬地震波を設定する。
- ○設定した解放基盤表面における標準応答スペクトルを考慮した地震動を下記に示す。

応答スペクトル(水平方向)

応答スペクトル(鉛直方向)

余白

3.4 まとめ

一部加筆修正(R4.5.13審査会合資料)

110

【模擬地震波の作成方針】

- ○地震基盤相当面における標準応答スペクトルに適合する模擬地震波を作成する。
- ○作成に際しては、複数の手法として乱数位相を用いた手法、実観測記録の位相を用いた手法による検討を実施する。

【① 乱数位相を用いた模擬地震波の作成】

○模擬地震波の作成にあたっては、Noda et al.(2002)による振幅包絡線の経時的変化(M7.0, Xeg=10km)を採用し、一様乱数の 位相をもつ正弦波の重ね合わせにより作成。

【② 観測位相を用いた模擬地震波の検討】

- ○敷地において、標準応答スペクトルに適用できる地震観測記録は得られていないことから、他機関の記録を用いた検討を実施。
- ○観測記録の収集は、震源特性に加え、伝播特性に着目し、可能な限り敷地近傍の記録を収集するため、敷地周辺のKiK-net観測点 を対象に内陸地殻内地震の観測記録を収集。
- ○収集した8つの観測記録について、模擬地震波の検討にあたって考慮すべき観測記録として選定するか総合的に判断した結果、模 擬地震波の検討にあたって考慮すべき観測記録は得られていない。
- ⇒実観測記録の位相を用いた手法による検討を進めた結果、模擬地震波の検討にあたって考慮すべき観測記録は得られなかったこと から、 乱数位相を用いた手法によって作成した模擬地震波を用いる。
- ⇒なお、 観測記録を用いた模擬地震波を算定し、 乱数位相を用いた模擬地震波と比較した結果、 標準応答スペクトルを考慮した地震 動評価として乱数位相を用いた模擬地震波を設定することが妥当であることを確認している。

【③ 解放基盤表面における地震動の設定】

○乱数位相を用いた模擬地震波について、1次元波動論により地震波の伝播特性の反映し、解放基盤表面における標準応答スペクト ルを考慮した地震動を設定。

余白

- ・ 物理探査ハンドブック(1999):公益社団法人物理探査学会
- ・ 太田外気晴・丹羽正徳・高橋克也・八幡夏恵子(1985):物理探査と室内試験から評価されるVp, Vs及びポアソン比の関係, 日本 地震学会講演予稿集, 1985年春季大会, B12, 108
- 独立行政法人 防災科学技術研究所(2005):石狩低地東縁断層帯の地震を想定した地震動予測地図作成手法の検討,防災科学技術研究所研究資料 第283号
- S.Noda, K.Yashiro, K.Takahashi, M.Takemura, S.Ohno, M.Tohdo and T.Watanabe(2002):RESPONSE SPECTRA FOR
 DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD Workshop on the Relations Between Seismological DATA
 and Seismic Engineering, Oct. 16–18, Istanbul, 399–408
- 原子力発電所耐震設計技術指針 JEAG4601-2015:一般社団法人日本電気協会
- ・ 気象庁:地震年報(1923~2012)
- 気象庁ホームページ:各種データ・資料「https://www.jma.go.jp/jma/menu/menureport.html」